6. Виртуальные методы
Наследование позволяет создавать иерархические, связанные отношениями подчинения, структуры данных. Следует, однако, заметить, что при использовании этой возможности могут возникнуть проблемы. Предположим, что в нашей графической программе необходимо определить объект Circle, который является потомком другого объекта Point:
Type
Circle = object (point)
Radius: Integer;
Procedure Show;
Procedure Hide;
Procedure Expand(ExpandBy: Integer);
Procedure Contact(ContactBy: Integer);
End;
Новый объект Circle соответствует окружности. Поскольку свойства окружности отличаются от свойств точки, в объекте-наследнике придется изменять процедуры Show и Hide, которые отображают окружность и удаляют её изображение с экрана. Может оказаться, что метод Init (см. предыдущий пример) объекта Circle, унаследованный от объекта Point, также использует методы Show и Hide, впредь во время трансляции объекта Point использует ссылки на старые методы. Очевидно в объекте Circle они работать не будут. Можно, конечно, попытаться «перекрыть» метод Init. Чтобы это сделать, нам придётся полностью воспроизвести текст метода. Это усложни работу, да и не всегда возможно, поскольку исходного текста программы может не оказаться под рукой (если объект-родитель уже находиться в оттранслированном модуле).
Для решения этой проблемы используется виртуальный метод. Связь между виртуальным методом и вызывающими их процедурами устанавливается не во время трансляции (это называется ранним связанием), а во время выполнения программы (позднее связание.
Чтобы использовать виртуальный метод, необходимо в описании объекта после заголовка метода добавить ключевое слово virtual. Заголовки виртуальных методов родителя и наследника должны в точности совпадать. Инициализация экземпляра объекта, имеющего виртуальные методы, должна выполняться с помощью специального метода – конструктора. Конструктор обычно присваивает полям объекта начальные значения и выполняет другие действия по инициализации объекта. В заголовке метода-конструктора слово procedure заменяется словом constructor. Действия обратные действиям конструктора, выполняет ещё один специальный метод – деструктор. Он описывается словом destructor.
Конструктор выполняет действия по подготовке позднего связывания. Эти действия заключаются в создании указателя на таблицу виртуальных методов, которая в дальнейшем используется для поиска методов. Таблица содержит адреса всех виртуальных методов. При вызове виртуального метода по его имени определяется адрес, а затем по этому адресу передается управление.
У каждого объектного типа имеется своя собственная таблица виртуальных методов, что позволяет одному и тому же оператору вызывать разные процедуры. Если имеется несколько экземпляров объектов одного типа, то недостаточно вызвать конструктор для одного из них, а затем просто скопировать этот экземпляр во все остальные. Каждый объект должен иметь свой собственный конструктор, который вызывается для каждого экземпляра. В противном случае возможен сбой в работе программы.
Заметим, что конструктор или деструктор, могут быть «пустыми», то есть не содержать операторов. Весь необходимый код в этом случае создается при трансляции ключевых слов construct и destruct.
7. Динамическое создание объектов
Переменные объектного типа могут быть динамическими, то есть размещаться в памяти только во время их использования. Для работы с динамическими объектами используются расширенный синтаксис процедур New и Dispose. Обе процедуры в этом случае содержат в качестве второго параметра вызов конструктора или деструктора для выделения или освобождения памяти переменной объектного типа:
New(P, Construct)
или
Dispose(P, Destruct)
Где P – указатель на переменную объектного типа, а Construct или Destruct – конструктор и деструктор этого типа.
Действие процедуры New в случае расширенного синтаксиса равносильно действию следующей пары операторов:
New(P);
P^.Construct;
Эквивалентом Dispose является следующее:
P^Dispose;
Dispose(P)
Применение расширенного синтаксиса не только улучшает читаемость исходного кода, но и генерирует более короткий и эффективный исполняемый код.
8. Полиморфизм
Полиморфизм заключается в том, что одно и то же имя может соответствовать различным действиям в зависимости от типа объекта. В тех примерах, которые рассматривались ранее, полиморфизм проявлялся в том, что метод Init действовал по-разному в зависимости от того, является объект точкой или окружностью. Полиморфизм напрямую связан с механизмом позднего связывания. Решение о том, какая операция должна быть выполнена в конкретной ситуации, принимается во время выполнения программы.
Следующий вопрос, связанный с использованием объектов, заключается в совместимости объектных типов. Полезно знать следующее. Наследник сохраняет свойства совместимости с другими объектами своего родителя. В правой части оператора присваивания вместо типов родителя можно использовать типы наследника, но не наоборот. Таким образом, в нашем примере допустимы присваивания:
Var
Alocation : Location;
Apoin : Point;
Acircle : Circle;
Alocation :=Apoint
Apoint := Acrcle;
Alocation := Acircle;
Дело в том, что наследник может быть более сложным объектом, содержащим поля и методы, поэтому присваиваемые значения экземпляра объекта-родителя экземпляру объекта-наследника может оставить некоторые поля неопределёнными и, следовательно, представляет потенциальную опасность. При выполнении оператора присвоения копируются только те поля данных, которые являются общими для обоих типов.
[1] Выполняется на языке Turbo Pascal, начиная с версии 5.0. Далее все примеры даны для выполнения на этом языке программирования.
... используется вниз и вверх по иерархии объектов, причем каждый объект иерархии выполняет это действие способом, именно ему подходящим. 2. Объект - как базовое понятие в объектно-ориентированном программировании Понятию “объект” сопоставляют ряд дополняющих друг друга определений. Ниже приведены некоторые из них. Объект - это осязаемая реальность, характеризующаяся четко определяемым ...
... поставленной задачи. 1. Постановка задачи Для формирования четкого представления о предложенном методе необходимо подробно рассмотреть предметную область, а именно, параметрический анализ структуры Тьюринга [2]. В общем случае под термином структура Тьюринга понимают систему дифференциальных уравнений определенного вида. Для реакции двух веществ с одномерной диффузией система уравнений будет ...
... решила эту проблему лишь частично. На основе Си в 80-е годы был разработан язык Си++, вначале названный "Си с классами". Си++ практически включает язык Си и дополнен средствами объектно-ориентированного программирования. Рабочая версия Си++ появилась в 1983 г. С тех пор язык продолжает развиваться и опубликовано несколько версий проекта стандартов Си и Си++. Рядом фирм, производящих программное ...
... = 0; while (!treeSortIter.EndOfList()) { arr[i++] = treeSortIter.Data(); treeSortIter.Next(); } } Рис. 20. 3. Алгоритм реализации АВЛ – деревьев через классы объектно – ориентированного программирования. Программа создана на объектно – ориентированном языке программирования C++ в среде быстрой разработки (RAD) Bolrand C++ Builder 6.0, имеет графический интерфейс. Текст ...
0 комментариев