Пояснительная записка к курсовому проекту 08.092.54ИС1
Выполнил: студент группы 54ИС1 Новицкий Андрей
Санкт-Петербургский Государственный Морской Технический Университет
Кафедра 50
Санкт-Петербург
2003
Введение
К одной из важнейшей научно-технической проблеме современности можно отнести освоение водного пространства.
Освоение океана повлекло множество технических проблем. Одной из них являлась невозможность заглянуть в глубины океана, узнать особенности дна, наличие и особенности подводных обитателей. С появлением судов и устройств, способных пребывать под водой более или менее долго, возникла проблема передачи информации: связь с другими объектами, сканирование окружающего пространства и прочее.
Акустические (звуковые) волны, благодаря своей природы, свойствам водной среды, способны возбуждаться при сравнительно малых затратах энергии, и распространяться на большие расстояния, при некоторых условиях на тысячи и десятки тысячи километров.
С помощью гидроакустических средств (ГАС) производят картографирование дна морей и океанов и обнаруживают предметы (эхолоты и гидролокаторы бокового обзора), осуществляют водную связь (средства гидроакустической связи), обеспечивают безопасность плавания судов, измерение скорости хода и глубины под килем (средство судовождения), производят поиск скопления рыб, управление автономными подводными приборами, доставляющими информацию о состоянии подводной обстановки (средств телеметрии и телеуправления), обнаруживают и определяют координаты подводных объектов.
Процесс преобразования электрической энергии в акустическую выполняют подводные электроакустические излучатели и приёмники, входящие в состав антенны, и называемые гидроакустическими преобразователями (ГАП).
Конструкцию антенны определяют, в основном, её назначение и местоположение. Так, антенны судовых гидроакустических систем можно размещать на корпусе судна, буксировать или опускать за борт; антенны стационарных гидроакустических станций устанавливают на фундаментальных опорах в прибрежных районах, у входов в порты, в районах рейдовых стоянок и т.п.
Техническими параметрами гидролокационных станций (ГАС) являются: рабочая частота (от единицы до десятков килогерц), излучаемая акустическая мощность (от сотен ватт до сотен киловатт), ширина диаграммы направленности антенны в режимах излучения и приема в главных плоскостях, форма и длительность излучаемых импульсов, уровень усиления приемного тракта, ширина полосы частот приемного тракта. ГАС, которые не излучают акустическую энергию и предназначены для обнаружения и определения пеленга (курсового угла) подводного объекта по производимому им шуму, в частности движущегося судна, относят к пассивным средствам ШПС – полоса рабочих частот, ширина диаграммы направленности антенны, коэффициента усиления приемного тракта.
В данной работе для обеспечения ХН с малыми боковыми максимумами предлагается ромбический поршень, у которого величина бокового максимума меньше 5%.
Основная часть:
1. Выбор формы, определения размеров антенны и направленности
Для обеспечения малой величины бокового максимума (10%) выбираем излучающую пластину в форме плоского ромба, характеристика направленности которого выражается формулой
R()=, (1)
где - длина диагонали, - длина волны в воде.
м
По заданию, в осевой диагональной плоскости угловая ширина главного лепестка на уровне 0,7 в плоскости х0z равна, а в плоскости у0z .
Обозначим аргумент функции (1) через a, то есть . Получаем уравнение
, откуда
, (2)
Построим графики и 0,84; корень уравнения находится в точке пересечения обоих графиков, которой соответствует значение . Следовательно , длина диагонали .
Для м.
Для м.
Проверка решения уравнения (2). Подставляем с очень малой погрешностью.
Таким образом, волновые размеры диагоналей равны и . Соответствующие выражения для характеристик направленности имеют вид , .
В формуле угол отчитывается от оси z, проходящей через точку пересечения диагоналей ромба, в плоскости x0z; в формуле угол также отсчитывается от оси z, но в плоскости y0z.
Излучающая пластина совмещена с плоскостью х0у, которой ось z перпендикулярна.
Нули в направлениях, определяемых из уравнений
, m=1,2,3...... (3)
, , , и т.д.
Направления боковых максимумов (приближенно):
Þ ; ; и т.д.
Аналогично все повторяется для , формулы те же.
Коэффициент осевой концентрации, учитывая немалые размеры излучающей поверхности, рассчитывается по формуле
или , (4)
где S – активная площадь антенны
Подставляя значения и , получаем
Для плоскости х0z ( ДН содержит только один главный лепесток: и , а , то есть последующих нулевых направлений нет. В плоскости y0z значения углов и величины боковых максимумов даны в следующей таблице 1:
Таблица 1
|
|
|
|
|
|
|
7,8 | 11,8 | 15,8 | 19,9 | 24,1 | 28,5 | 33,0 |
|
|
|
|
|
|
|
0 | 0,045 | 0 | 0,016 | 0 | 0,008 | 0 |
Таблица 2
, град. | 1 | 2 | 2,5 | 3 | 4 | 5 |
0,94 | 0,89 | 0,70 | 0,60 | 0,38 | 0,20 |
В плоскости х0z () значения углов и величины боковых максимумов дана в следующей таблице 2:
Таблица 3
|
|
|
32 | 54 | 90 |
|
|
|
0 | 0,0055 | 0 |
Таблица 4
,град. | 5 | 10 | 15 | 20 |
| 0,91 | 0,71 | 0,44 | 0,20 |
Как видно из таблиц, наибольший боковой максимум равен 0,045, то есть составляет 4,5%. Следовательно, требования задания выполнено, что обеспечено выбором формы антенны, при которой амплитуда колебаний уменьшается от середины к краю.
... системы становится большим. Поэтому обычно отказываются от синфазного возбуждения отдельных щелей и выбирают расстояние между ними d ¹ lВ/2. Характерной особенностью получаемой таким образом нерезонансной волноводно-щелевой антенны (НВЩА) является более широкая полоса частот, в пределах которой имеет место хорошее согласование, так как отдельные отражения при большом числе излучателей почти ...
... может быть любой однонаправленный излучатель. Важно, чтобы большая часть энергии излучения попадала на линзу, а не рассеивалась в других направлениях. Так как облучатель является важнейшим элементом линзовой антенны, в значительной степени определяющим ее параметры, то расчет обычно начинается с выбора облучателя. Основными критериями для его выбора являются рабочая длина волны, требования к ...
... ними, поэтому эти антенны узкополосные. 2. Исходные данные и их краткий анализ Исходные данные: f0=370 МГц Df =5% P=100 Вт КУ=6 дБ В данном курсовом проекте необходимо рассчитать коллинеарную антенную решетку с последовательным возбуждением, это требует выполнение ряда условий. Во-первых, нашу антенну необходимо питать у основания, т.е. на отражающем экране. Во-вторых, необходимо ...
... 2α≈0,4λмакс; продольный размер в зависимости от требуемого коэффициента перекрытия диапазона и направленности лежит в пределах L≈(1...4)λмакс. 1.2 Плоская арифметическая спиральная антенна Рис.1.2.1. Арифметическая спираль 1.2.1 Арифметическая спираль выполняется в виде плоских металлических лент или щелей в металлическом экране (рис. 1.2.1). Уравнение этой ...
0 комментариев