2. Колебательная система преобразователя
По заданию, колебательная система преобразователя – полуволновая, то есть пьезо-
керамическая поршневая пластина не нагружена накладками (рис.5). Боковые размеры пластины велики по сравнению с ее толщиной. Электроды наложены на большие грани, перпендикулярные оси z.
Необходимые расчетные формулы даны в §9.6 [1] и в пособии [2].
Резонансная частота при продольном пьезоэффекте определяется из уравнения
,
где - скорость распространения волны в пластине, измеренная при разомкнутых электродах.
Для дальнейших расчетов требуется знать конкретный пьезоэлектрический материал, марку пьезокерамики.
3. Чувствительность излучателя
Эффективность излучателя можно оценить давлением P, которое он создает в точке, в направлении главного максимума при определенном электрическом напряжении U на входе. Такая оценка называется чувствительностью излучателя и определяется по формуле
, (6)
где r – расстояние до точки измерения давления. Если принять r=1м и U=1В, то величина .
Для определения акустического давления воспользуемся известным соотношением между излучаемой мощностью и давлением на оси
Допустимая удельная мощность излучения ограничивается порогом кавитации , величина которого тем выше, чем меньше длительность импульса и больше гидростатическое давление (заглубление антенны). При и [2]. Зависимость от определяется формулой
По заданию, =100м, получаем . С учетом длительности можем принять . Тогда , - излучаемая площадь антенны.
Из выражения (4) находим звуковое давление
Таким образом, чувствительность излучателя
Выбор активного материала и расчет электрических параметров
Основным назначением рассматриваемой антенны является излучение акустической энергии. Известно, что при одинаковой напряженности электрического поля наибольшая мощность излучения будет у преобразователей из пьезокерамики составов ЦТБС-3, ЦТС-19 и ЦТСНВ-1 [1]. Следовательно, для получения наибольшей удельной акустической мощности при наименьшей величины напряжения целесообразно использовать указанные активные материалы. Остановимся на ЦТБС-3, приведем значения ее постоянных:
Толщину пьезокерамической пластины определим, принимая заданную частоту 250 кГц за частоту резонанса, так как антенна излучающая, тогда
Статическая электрическая емкость пластины
,
где - площадь электрода.
Эквивалентное сопротивление электрических потерь
,
Емкостное сопротивление
Коэффициент электромеханической трансформации
Сопротивление электрических потерь на резонансе
Емкостное сопротивление на резонансной частоте
Акустическая мощность излучения при резонансе
Здесь - КПД, учитывающий механические потери; принимаем . Величина - активное сопротивление излучения, соответствует немалым волновым размерам пластины:
Частотная зависимость акустической мощности вблизи резонанса
,
где - механическая добротность
При такой высокой добротности резонансная кривая мощности представляется весьма узкополосной: относительная ширина полосы и
Электрический импеданс преобразователя образован из сопротивлений электрической части и приведенных к ней механических:
.
На частоте механического резонанса , сумма , так как
>>; .
Импеданс , Ом
Конструкция антенны
Кабель 3 марки ПГЭШ-1.0 вклеивается в хвостовик корпуса 2, выполненного из латуни Л-63. Хвостовик корпуса вместе с кабелем вулканизируется резиной. Сырьем для вулканизации служит сырая резина марки С-576. Текстолитовая шайба 5 и пенопластовая обойма 4 склеиваются клеем К-153. В обойму из полиуретана вклеивается пьезокерамический преобразователь 1 с припаянными проводниками. Провод укладывается в канал блока, он припаян к кабелю 3 и к преобразователю. Рабочую поверхность преобразователя и части образующей корпус 2 смазывают клеем. Затем осуществляется заливка компаундом
6. Измерение характеристики направленности (ХН)
Измерения характеристики направленности (ХН) излучателей и приемников звука является простой операцией, но требует выполнения ряда условий для получения правильных результатов.
Испытуемый преобразователь (излучатель, приемник) поворачивается вокруг оси, перпендикулярной плоскости в которой определяется ХН. Расстояние между излучателем и приемником следует выбирать так, чтобы ХН полностью сформировалась, то есть не зависят от дальнейшего увеличения . Обычно пользуются приближенной оценкой этой величины
0,161м
где L – максимальный габаритный размер преобразователя (антенны).
Если за критерий взять среднюю фазовую ошибку, то относительная погрешность измерения направленности антенны размером L будет равна
=
Расстояние r по этому критерию оценивается неравенством
Если же излучение и прием осуществляются излучателями заключительных размеров, то расстояние r отвечает неравенству
Условия измерений должны соответствовать свободному полю, чтобы при каждом новом повороте регистрировался (измерялся) только прямой сигнал, распространяющийся от излучателя к приемнику.
Поворот системы производится электромеханических приводом – двигателем и набором шестерней, обеспечивающих приемлемую частоту вращения, определяемую скоростью фиксации сигналов, характером среды и требуемой точностью структуры ХН.
Для регистрации ХН в полярных координатах используют круглые бланки, поворачивающиеся синхронно с поворотом испытуемого преобразователя.
Синхронизация движения бумаги и вращения испытуемого преобразователя лучше всего обеспечивается сельсильной связью: ось сельсина – датчика механически соединяется с валом, непосредственно вращающим преобразователем, а ось сельсина – приемника – с осью вращения бланка. Сельсины обеспечивают точность передачи угла порядка 0,5°, что вполне достаточно для большинства акустических измерений.
Заключение
Спроектирован излучающий преобразователь в виде пьезокерамического поршня в форме ромба. Такая форма обеспечивает малый уровень боковых максимумов (4,5%). Эффективность преобразователя достаточна, благодаря применению пьезокерамического материала состава ЦТБС-3.
Требования задания по направленности антенны выполнено с соответствующим выбором размеров (диагоналей) излучающей поверхности.
Список литературы
Свердлин Г.М. Прикладная гидроакустика. Л: Судостроение, 1990
Свердлин Г.М. Гидроакустические преобразователи и антенны Л.: Судостроение, 1988.
Свердлин Г.М., Огурцов Ю.П. Расчет преобразователей. Учебное пособие. Л: ЛКИ, 1976.
Кобяков Ю.С. и др. Конструирование гидроакустической рыбопоисковой аппаратуры. Л: Судостроение, 1986.
Колесников А.Е. Акустические измерения. Учебник для вузов. Л: Судостроение, 1983.
... системы становится большим. Поэтому обычно отказываются от синфазного возбуждения отдельных щелей и выбирают расстояние между ними d ¹ lВ/2. Характерной особенностью получаемой таким образом нерезонансной волноводно-щелевой антенны (НВЩА) является более широкая полоса частот, в пределах которой имеет место хорошее согласование, так как отдельные отражения при большом числе излучателей почти ...
... может быть любой однонаправленный излучатель. Важно, чтобы большая часть энергии излучения попадала на линзу, а не рассеивалась в других направлениях. Так как облучатель является важнейшим элементом линзовой антенны, в значительной степени определяющим ее параметры, то расчет обычно начинается с выбора облучателя. Основными критериями для его выбора являются рабочая длина волны, требования к ...
... ними, поэтому эти антенны узкополосные. 2. Исходные данные и их краткий анализ Исходные данные: f0=370 МГц Df =5% P=100 Вт КУ=6 дБ В данном курсовом проекте необходимо рассчитать коллинеарную антенную решетку с последовательным возбуждением, это требует выполнение ряда условий. Во-первых, нашу антенну необходимо питать у основания, т.е. на отражающем экране. Во-вторых, необходимо ...
... 2α≈0,4λмакс; продольный размер в зависимости от требуемого коэффициента перекрытия диапазона и направленности лежит в пределах L≈(1...4)λмакс. 1.2 Плоская арифметическая спиральная антенна Рис.1.2.1. Арифметическая спираль 1.2.1 Арифметическая спираль выполняется в виде плоских металлических лент или щелей в металлическом экране (рис. 1.2.1). Уравнение этой ...
0 комментариев