Колебательная система преобразователя

11762
знака
4
таблицы
3
изображения

2. Колебательная система преобразователя

По заданию, колебательная система преобразователя – полуволновая, то есть пьезо-

керамическая поршневая пластина не нагружена накладками (рис.5). Боковые размеры пластины велики по сравнению с ее толщиной. Электроды наложены на большие грани, перпендикулярные оси z.

 

Необходимые расчетные формулы даны в §9.6 [1] и в пособии [2].

Резонансная частота при продольном пьезоэффекте определяется из уравнения

,

где - скорость распространения волны в пластине, измеренная при разомкнутых электродах.

Для дальнейших расчетов требуется знать конкретный пьезоэлектрический материал, марку пьезокерамики.

3. Чувствительность излучателя

Эффективность излучателя можно оценить давлением P, которое он создает в точке, в направлении главного максимума при определенном электрическом напряжении U на входе. Такая оценка называется чувствительностью излучателя и определяется по формуле

, (6)

где r – расстояние до точки измерения давления. Если принять r=1м и U=1В, то величина .

Для определения акустического давления воспользуемся известным соотношением между излучаемой мощностью  и давлением на оси

Допустимая удельная мощность излучения ограничивается порогом кавитации , величина которого тем выше, чем меньше длительность импульса  и больше гидростатическое давление (заглубление  антенны). При  и  [2]. Зависимость от  определяется формулой

 

По заданию, =100м, получаем . С учетом длительности  можем принять . Тогда , - излучаемая площадь антенны.

 

Из выражения (4) находим звуковое давление

 

Таким образом, чувствительность излучателя

Выбор активного материала и расчет электрических параметров

Основным назначением рассматриваемой антенны является излучение акустической энергии. Известно, что при одинаковой напряженности электрического поля наибольшая мощность излучения будет у преобразователей из пьезокерамики составов ЦТБС-3, ЦТС-19 и ЦТСНВ-1 [1]. Следовательно, для получения наибольшей удельной акустической мощности при наименьшей величины напряжения целесообразно использовать указанные активные материалы. Остановимся на ЦТБС-3, приведем значения ее постоянных:

 

Толщину пьезокерамической пластины определим, принимая заданную частоту 250 кГц за частоту резонанса, так как антенна излучающая, тогда

 

Статическая электрическая емкость пластины

,

где - площадь электрода.

 

Эквивалентное сопротивление электрических потерь

 ,

 

Емкостное сопротивление


 

Коэффициент электромеханической трансформации

 

Сопротивление электрических потерь на резонансе

 

Емкостное сопротивление на резонансной частоте

 

Акустическая мощность излучения при резонансе

 

Здесь - КПД, учитывающий механические потери; принимаем . Величина - активное сопротивление излучения, соответствует немалым волновым размерам пластины:

 

Частотная зависимость акустической мощности вблизи резонанса

,

где - механическая добротность

 

При такой высокой добротности резонансная кривая мощности представляется весьма узкополосной: относительная ширина полосы  и

Электрический импеданс преобразователя образован из сопротивлений электрической части и приведенных к ней механических:

  .

На частоте механического резонанса  , сумма , так как

>>; .

Импеданс , Ом

Конструкция антенны

Кабель 3 марки ПГЭШ-1.0 вклеивается в хвостовик корпуса 2, выполненного из латуни Л-63. Хвостовик корпуса вместе с кабелем вулканизируется резиной. Сырьем для вулканизации служит сырая резина марки С-576. Текстолитовая шайба 5 и пенопластовая обойма 4 склеиваются клеем К-153. В обойму из полиуретана вклеивается пьезокерамический преобразователь 1 с припаянными проводниками. Провод укладывается в канал блока, он припаян к кабелю 3 и к преобразователю. Рабочую поверхность преобразователя и части образующей корпус 2 смазывают клеем. Затем осуществляется заливка компаундом

6. Измерение характеристики направленности (ХН)

Измерения характеристики направленности (ХН) излучателей и приемников звука является простой операцией, но требует выполнения ряда условий для получения правильных результатов.

Испытуемый преобразователь (излучатель, приемник) поворачивается вокруг оси, перпендикулярной плоскости в которой определяется ХН. Расстояние  между излучателем и приемником следует выбирать так, чтобы ХН полностью сформировалась, то есть не зависят от дальнейшего увеличения . Обычно пользуются приближенной оценкой этой величины

0,161м

где L – максимальный габаритный размер преобразователя (антенны).

Если за критерий взять среднюю фазовую ошибку, то относительная погрешность измерения  направленности антенны размером L будет равна

= 

Расстояние r по этому критерию оценивается неравенством

 

Если же излучение и прием осуществляются излучателями заключительных размеров, то расстояние r отвечает неравенству

 

Условия измерений должны соответствовать свободному полю, чтобы при каждом новом повороте регистрировался (измерялся) только прямой сигнал, распространяющийся от излучателя к приемнику.

Поворот системы производится электромеханических приводом – двигателем и набором шестерней, обеспечивающих приемлемую частоту вращения, определяемую скоростью фиксации сигналов, характером среды и требуемой точностью структуры ХН.

Для регистрации ХН в полярных координатах используют круглые бланки, поворачивающиеся синхронно с поворотом испытуемого преобразователя.

Синхронизация движения бумаги и вращения испытуемого преобразователя лучше всего обеспечивается сельсильной связью: ось сельсина – датчика механически соединяется с валом, непосредственно вращающим преобразователем, а ось сельсина – приемника – с осью вращения бланка. Сельсины обеспечивают точность передачи угла порядка 0,5°, что вполне достаточно для большинства акустических измерений.

Заключение

Спроектирован излучающий преобразователь в виде пьезокерамического поршня в форме ромба. Такая форма обеспечивает малый уровень боковых максимумов (4,5%). Эффективность преобразователя достаточна, благодаря применению пьезокерамического материала состава ЦТБС-3.

Требования задания по направленности антенны выполнено с соответствующим выбором размеров (диагоналей) излучающей поверхности.

Список литературы

Свердлин Г.М. Прикладная гидроакустика. Л: Судостроение, 1990

Свердлин Г.М. Гидроакустические преобразователи и антенны Л.: Судостроение, 1988.

Свердлин Г.М., Огурцов Ю.П. Расчет преобразователей. Учебное пособие. Л: ЛКИ, 1976.

Кобяков Ю.С. и др. Конструирование гидроакустической рыбопоисковой аппаратуры. Л: Судостроение, 1986.

Колесников А.Е. Акустические измерения. Учебник для вузов. Л: Судостроение, 1983.


Информация о работе «Антенна излучающая»
Раздел: Наука и техника
Количество знаков с пробелами: 11762
Количество таблиц: 4
Количество изображений: 3

Похожие работы

Скачать
9489
0
8

... системы становится большим. Поэтому обычно отказываются от синфазного возбуждения отдельных щелей и выбирают расстояние между ними d ¹ lВ/2. Характерной особенностью получаемой таким образом нерезонансной волноводно-щелевой антенны (НВЩА) является более широкая полоса частот, в пределах которой имеет место хорошее согласование, так как отдельные отражения при большом числе излучателей почти ...

Скачать
31565
0
25

... может быть любой однонаправленный излучатель. Важно, чтобы большая часть энергии излучения попадала на линзу, а не рассеивалась в других направлениях. Так как облучатель является важнейшим элементом линзовой антенны, в значительной степени определяющим ее параметры, то расчет обычно начинается с выбора облучателя. Основными критериями для его выбора являются рабочая длина волны, требования к ...

Скачать
10853
1
23

... ними, поэтому эти антенны узкополосные.   2. Исходные данные и их краткий анализ Исходные данные: f0=370 МГц Df =5% P=100 Вт КУ=6 дБ В данном курсовом проекте необходимо рассчитать коллинеарную антенную решетку с последовательным возбуждением, это требует выполнение ряда условий. Во-первых, нашу антенну необходимо питать у основания, т.е. на отражающем экране. Во-вторых, необходимо ...

Скачать
85726
2
37

... 2α≈0,4λмакс; продольный размер в зависимости от требуемого коэффициента перекрытия диапазона и направленности лежит в пределах L≈(1...4)λмакс. 1.2 Плоская арифметическая спиральная антенна Рис.1.2.1. Арифметическая спираль 1.2.1 Арифметическая спираль выполняется в виде плоских металлических лент или щелей в металлическом экране (рис. 1.2.1). Уравнение этой ...

0 комментариев


Наверх