2. Составление уравнений.

система с ожиданием в случае простейшего потока и показательного времени обслуживания представляют собой случайный процесс Маркова.

Найдём те уравнения, которым удовлетворяют вероятности Pk(t). Одно из уравнений очевидно, а именно для каждого t

. (2)

Найдем сначала вероятность того, что в момент t+h все приборы свободны. Это может произойти следующими способами:

 в момент t все приборы были свободны и за время h новых требований не поступало;

 в момент t один прибор был занят обслуживанием требования, все остальные приборы свободны; за время h обслуживание требования было завершено и новых требований не поступило.

Остальные возможности, как-то: были заняты два или три прибора и за время h работа на них была закончена - имеют вероятность o(h), как легко в этом убедится.

Вероятность первого из указанных событий равна

вероятность второго события

Таким образом,

Отсюда очевидным образом приходим к уравнению

 (3)

Перейдем теперь к составлению уравнений для Pk(t) при k ³ 1. Рассмотрим отдельно два различных случая: 1 £ k < m и k ³ m. Пусть вначале 1 £ k < m. Перечислим только существенные состояния, из которых можно прийти в состояние Ek в момент t+h. Эти состояния таковы:

В момент t система находилась в состоянии Ek, за время h новых требований не поступило и ни один прибор не окончил обслуживания. Вероятность этого события равна

В момент t система находилась в состоянии Ek-1, за время h поступило новое требование, но ни одно ранее находившееся требование не было закончено обслуживанием. Вероятность этого события равна

В момент t система находилась в состоянии Ek+1 , за время h новых требований не поступило, но одно требование было обслужено. Вероятность этого равна

Все остальные мыслимые возможности перехода в состояние Ek за промежуток времени h имеют вероятность, равную 0(h).

Собрав воедино найденные вероятности, получаем следующее равенство:

Несложные преобразования приводят нас к такому уравнению для 1 £ k < m:

(4)

Подобные же рассуждения для k ³ m приводят к уравнению

`(5)

Для определения вероятностей Pk(t) мы получили бесконечную систему дифференциальных уравнений (2)-(5). Ее решение представляет несомненные технические трудности.

3. Определение стационарного решения.

В теории массового обслуживания обычно изучают лишь установившееся решение для t ® ¥. Существование таких решений устанавливается так называемыми эргодическими теоремами, некоторые из них позднее будут нами установлены. В рассматриваемой задаче оказывается, что предельные или, как говорят обычно, стационарные вероятности существуют. Введем для них обозначения Pk . Заметим дополнительно, (этого мы также сейчас не станем доказывать), что  при t®¥.

Сказанное позволяет заключить, что уравнения (3), (4) и (5) для стационарных вероятностей принимают следующий вид:

(6)

при 1 £ k < m

(7)

при k ³ m

(8)

К этим уравнениям добавляется нормирующее условие

(9)

Для решения полученной бесконечной алгебраической системы введем обозначения: при 1£ k<m

при k ³ m

Система уравнений (6)-(8) в этих обозначениях принимает такой вид:

z1=0, zk-zk+1=0 при k ³ 1

Отсюда заключается, что при всех k ³ 1 zk =0

т.е. при 1 £ k < m

kmPk=lPk-1(10)

и при k ³ mmmPk=lPk-1(11)

Введем для удобства записи обозначение

r=l/m.

Уравнение (10) позволяет заключить, что при 1 £ k < m

(12)

При k ³ m из уравнения (11) находим, что

и следовательно, при k ³ m

(13)

Остается найти P0. Для этого в (9) подставляем выражения Pk из (12) и (13). В результате

Так бесконечная сумма, стоящая в квадратных скобках, находится только при условии, что

r < m(14)

то при этом положении находим равенство

(15)

Если условие (14) не выполнено, т.е. если r ³ m, то ряд, стоящий в квадратной скобке уравнения для определения P0 , расходится и, значит, P0 должно быть равно 0. Но при этом, как следует из (12) и (13), при всех k ³ 1 оказывается Pk =0.

Методы теории цепей Маркова позволяют заключить, что при r ³ m с течением времени очередь стремится к ¥ по вероятности.

4. Некоторые подготовительные результаты.

Во введении мы уже говорили, что для задачи с ожиданием основной характеристикой качества обслуживания является длительность ожидания требованием начала обслуживания. Длительность ожидания представляет собой случайную величину, которую обозначим буквой g. Рассмотрим сейчас только задачу определения распределения вероятностей длительности ожидания в уже установившемся процессе обслуживания. Обозначим далее через P{g > t} вероятность того, что длительность ожидания превзойдет t, и через Pk{g > t} вероятность неравенства, указанного в скобке, при условии, что в момент поступления требования, в очереди уже находится k требований. В силу формулы полной вероятности имеем равенство

 P{g > t}=.(16)

Прежде чем преобразовать эту формулу к виду, удобному для пользования, приготовим некоторые необходимые нам для дальнейшего сведения. Прежде всего для случаев m=1 и m=2 найдем простые формулы для P0. несложные преобразования приводят к таким равенствам: при m=1

P0=1-r,(17)

а при m=2

(18)

Вычислим теперь вероятность того, что все приборы будут заняты в какой-то наудачу взятый момент. Очевидно, что эта вероятность равна

(19)

Эта формула для m=1 принимает особенно простой вид:

p=r,(20)

при m=2

(21)

Напомним, что в формуле (19) r может принимать любое значение от 0 до m (включительно). Так что в формуле (20) r < 1, а в (21) r < 2.

 


Информация о работе «Системы с ожиданием»
Раздел: Информатика, программирование
Количество знаков с пробелами: 17829
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
18285
0
1

... (5) Для определения вероятностей Pk(t) мы получили бесконечную систему дифференциальных уравнений (2)-(5). Ее решение представляет несомненные технические трудности. 3. Определение стационарного решения. В теории массового обслуживания обычно изучают лишь установившееся решение для t ® ¥. Существование таких решений устанавливается так называемыми эргодическими теоремами, некоторые из них ...

Скачать
19056
0
1

тема массового обслуживания с ожиданием 1. Постановка задачи. Мы изучим здесь классическую задачу теории массового обслуживания в тех условиях, в каких она была рассмотрена и решена Эрлангом. На m одинаковых приборов поступает простейший поток требований интенсивности l. Если в момент поступления требования имеется хотя бы один свободный прибор, оно немедленно начинает обслуживаться. ...

Скачать
48576
0
16

... сколько их уже исправно и ждет наладки. Классификация СМО далеко не ограничивается приведенными разновидностями, но этого достаточно.2. Системы массового обслуживания с ожиданием   2.1 Одноканальная СМО с ожиданием   Рассмотрим простейшую СМО с ожиданием — одноканальную систему (n - 1), в которую поступает поток заявок с интенсивностью ; интенсивность обслуживания  (т.е. в среднем непрерывно ...

Скачать
87889
14
8

... и опасных факторов на человека при высокой производительности труда, создать комфортные условия для работы людей. Темой данной дипломной работы является методика оптимизации структуры и параметров библиотечной автоматизированной системы обеспечения информационными услугами. Работа проводилась на территории НТУ «ХПИ» в корпусе «У2». Рабочее помещение расположено на пятом этаже семиэтажного здания. ...

0 комментариев


Наверх