1.2. Определение выбиваемости
Противоречия в экспериментальных данных, полученных различными исследователями, объясняются прежде всего несоблюдением постоянства условий экспериментов и несовершенством применявшихся методов.
Надо признать, что объективную оценку выбиваемости стержней из отливок дать очень трудно, так как смеси при их разрушении подвергаются различным видам нагрузок. Пленки связующего материала испытывают при этом одновременное действие скалывающих, изгибающих и растягивающих усилий. Если с этой позиции рассмотреть наиболее распространенные методы выбивки стержней, то общим для них является ударное воздействие на стержень.
Многие исследователи определяли выбиваемость смесей по прочности стандартных образцов на сжатие, что не может характеризовать способность к разрушению под действием ударной нагрузки, хотя определенная зависимость между прочностью на сжатие и выбиваемостью, по-видимому, существует.
С другой стороны, использование для определения выбиваемости стержней встряхивающих выбивных решеток, вибрационных машин, пневматических зубил и других аналогичных приспособлений неизбежно вносит существенный элемент субъективности, так как трудно определить момент конца выбивки: образование пригарной корки различной толщины значительно затрудняет оценку собственно выбиваемости смесей.
Наконец, эти методы применяют обычно при изготовлении какой-либо одной, специально выбранной опытной отливки.
Поэтому полученные результаты могут быть использованы лишь как сравнительные применительно к данным или подобным отливкам и не могут быть перенесены без существенных поправок на другие отливки. Очевидно, разнообразие конфигураций, веса, типа сплава отливок и, соответственно, условий прогрева стержней настолько велико, что практически невозможно найти такую форму и размеры опытной отливки, чтобы полученные закономерности могли быть перенесены на большую номенклатуру литья.
Поэтому, прежде всего, было обращено внимание на выбор методики исследований, лишенной упомянутых основных недостатков. В основу методики[11,13] была положена оценка смесей по наиболее близкому к производственным условиям показателю — работе, затрачиваемой на выбивку («пробивку») образцов, предварительно нагретых до различных, заданных условиями опыта, температур.
Для этого применялся копер, снабженный специальными приспособлениями (рис. 1).
Рис. 1. Приспособления для оценки выбиваемости смесей:
а — исследуемый образец; б — металлическая гильза; в — поддон;
г — боек.
На нижнем конце вертикального штока копра укреплялся боек диаметром 20 мм. При изготовлении бойка его острие делалось тупым, чтобы при длительном использовании сохранить стабильными размеры бойка. Для того чтобы обеспечить возможность выхода разрушенной смеси из-под бойка, последний имел три продольных паза шириной 5 мм, расположенных по окружности под углом 120°. Приспособление для определения работы выбиваемости имело комплект съемных грузов и кулачков, обеспечивающих возможность изменения высоты падения грузов. Таким образом, изменением веса падающего груза и высоты падения последнего достаточно быстро и точно определяли работу, затрачиваемую на выбивку как очень слабых, так и прочных стержневых смесей.
Образцы высотой 30 мм и диаметром 50 мм, уплотненные тремя ударами на обычном копре, высушивались при 200° C в течение 20 мин или продувались углекислым газом в течение 45 сек. Затем они подвергались нагреву до различных заданных температур от 200 до 1400° C с интервалом 100—200° C, выдерживались при этой температуре в течение 40 мин и медленно охлаждались в печи со скоростью 200—300°/ч.
Полученные образцы а (рис. 1) плотно, без зазора, вставлялись в металлическую гильзу б, которая, в свою очередь, устанавливалась на поддон в. В дне поддона имелось отверстие диаметром 22 мм для свободного выхода бойка г, пробивающего образец а,
Работа, затраченная на выбивку («пробивку» образца), находилась из следующей зависимости:
A = nGh
где A — работа, затраченная на пробивку опытного образца, в кГм;
n — число ударов бойка, необходимых для пробивки образца;
G — вес падающего груза в кг;
h — высота падения груза в м.
1.3.Изменение работы выбивки смеси в зависимости от температуры нагрева
По описанной методике образцы смесей при их нагреве и охлаждении не испытывают сжимающих усилий, возникающих в стержнях при усадке отливок.
Поэтому в работе параллельно с испытанием образцов, подвергавшихся нагреву в печах, определяли выбиваемости смесей на опытных отливках плиты длиной 650 мм, шириной 200 мм и высотой 50 мм, в которую одновременно устанавливали четыре стержня из испытуемой смеси. В результате контрольных опытов были выбраны диаметры стержней с таким расчетом, чтобы отношение толщины стенки отливки к радиусу стержня составляло 0,5; 1,0; 2,0 и 4.0.
Опытные отливки весом 150 кг заливались при температуре 1550— 1580° C сталью 30Л. Температура нагрева стержней при разных соотношениях толщин стенок отливок к радиусам стерней приведена на рис. 2. Работа, затрачиваемая на выбивку стержней из отливок, определялась после полного их остывания с помощью переносного копра, аналогичного описанному выше.
Так как пленки склеивающие зерна наполнителя в случае продувания смесей углекислым газом и в случае удаления влаги при нагреве отличаются, то
поэтому при изучении общих закономерностей условий выбивки стержней опыты проводились с образцами, продутыми углекислым газом в течение 45 сек, и с образцами, высушенными при 200º C в течение 20 мин. Смесь содержала кварцевый песок Люберецкого месторождения (1К025А)—100 весовых частей; жидкое стекло (модуль 2,7, удельный вес 1,48 г/см3)— 5 весовых частей; NaOH (10 %-ный раствор)—1 весовая часть.
Была установлена непосредственная зависимость работы A, затрачиваемой на выбивку образцов, от температуры их предварительного нагрева (рис. 3).
Как видно из этой зависимости, кривая, характеризующая работу выбивки A, имеет два максимума и два минимума.
Первый максимум соответствует исходному состоянию образцов, нагретых до 200º C и охлажденных, а также продутых CO. При последующем нагреве и охлаждении образцов работа, затрачиваемая на их выбивку, непрерывно падает, достигая минимальных значений («первый минимум») в интервале 400—600° С.
Нагрев до более высоких температур вызывает новый значительный рост работы, затрачиваемой на выбивку, которая достигает максимальных значений при 800° C («второй максимум»).
Из приведенных на рис. 3 зависимостей видно также, что работа, затрачиваемая на выбивку образцов, продутых CO, при всех температурах их предварительного нагрева оказалась ниже работы, затраченной на выбивку высушенных образцов.
Однако, если при первом максимуме работы разница весьма существенна, то при втором максимуме эта разница значительно уменьшается, а при обоих минимумах величина A практически одинакова. Это свидетельствует о том, что при нагреве до высоких температур и охлаждении опытных образцов в смеси происходят одинаковые или подобные процессы. На этом явлении подробно остановимся.
Наличие минимума работы, затрачиваемой на выбивку образцов, предварительно нагретых до температур, лежащих в интервале 400—600° C, приводит к мысли о возможности создания в стержнях условий, при которых связь между отдельными зернами наполнителя нарушалась бы после заполнения литейной формы жидким металлом и образования на отливке твердой корки и не восстанавливалась бы в процессе последующего охлаждения стержней. Для достижения этой цели могут быть использованы два пути.
Первый заключается в регулировании степени прогрева стержней с использованием для этого различных теплопроводных и теплоизоляционных смесей; второй — в значительном расширении благоприятного для выбивки интервала температур.
На практике приходится сталкиваться с очень большим диапазоном температур прогрева стержней — от минимальной в центре до максимальной (близкой к температуре заливаемого металла) — на поверхности. Однако для успешной выбивки стержня часто оказывается достаточно иметь легкую выбиваемость его основного объема, тогда наружная часть, соприкасающаяся с отливкой, довольно легко может быть удалена. Об этом свидетельствует, например, опыт применения оболочковых стержней из смеси с жидким стеклом, как правило не вызывающих затруднений при выбивке из отливок.
Была проверена возможность регулирования степени прогрева стержней с помощью материалов с различными теплофизическими свойствами. Однако введение в смеси с жидким стеклом 20% чугунной стружки , 10% окалины, применение в качестве наполнителя хромомагнезита и других высокотеплопроводных материалов, введение в смеси
Рис.4. Влияние толщины стенки отливки на условия нагрева стержней из смесей с жидким стеклом:
1— хромомагнезитовой; 2 — кварцевого песка и 10% асбеста;
3 — кварцевого песка и 20% чугунной стружки.
материалов (асбеста), тормозящих отвод тепла, не позволило существенно изменить температуру в центре стержней (рис. 4).
Для решения второй задачи необходимо было установить причины, определяющие зависимость работы, затрачиваемой на выбивку стержней, от температуры их предварительного нагрева.
Существенное различие работы, затраченной на выбивку высушенных образцов (рис. 3) в области первого максимума (исходное состояние), объясняется различием природы пленок, связывающих зерна кварцевого песка. Небольшое увеличение прочности образцов, продутых углекислым газом и нагретых до 200° C, закономерно и объясняется краткой продолжительностью (45 сек) продувки образцов углекислым газом.
При последующем нагреве образцов до температур 400–600° C наблюдается значительное уменьшение работы, затрачиваемой на выбивку образцов.
Важно отметить, что величина работы в этом интервале температур является минимальной и практически одинаковой как для образцов, предварительно высушенных, так и для образцов продутых CO. Пленка жидкого стекла обладает чрезвычайно высокой адгезией к кварцевым зернам. Это особенно сильно проявляется в условиях высоких температур, когда происходит химическое взаимодействие между щелочным силикатом натрия и поверхностью кварцевых зерен.
Учитывая когезионный тип разрушения смесей с жидким стеклом, изменение прочностных свойств смесей в условиях их нагрева и последующего охлаждения можно объяснить изменениями, происходящими в пленке жидкого стекла.
Вследствие различных температурных коэффициентов объемного и линейного расширения стекловидного силиката натрия и кварцевого песка при повторном нагреве и охлаждении высушенных образцов в пленке, склеившей зерна наполнителя, возникают напряжения, приводящие к образованию трещин, нарушающих её сплошность и снижающих прочность образцов на удар.
При нагреве образцов до 600° C и последующем охлаждении к напряжениям, возникающим вследствие различия температурных коэффициентов расширения пленки и зерна, добавляются напряжения, возникающие в результате модификации изменений кварца (переход α-кварца в β-кварц при 575° С).
Снижение величины A и образование первого минимума объясняется также полной потерей влаги гелем кремневой кислоты и дисиликатом натрия в интервале температур примерно до 350–400° С.
Эти данные подтверждаются термограммами высушенных при: 200° C и продутых углекислым газом смесей, содержащих 6% жидкого стекла.
Здесь, однако, имеется в виду влияние не собственно потери влаги, а воздействия этого процесса на возникновение в пленке, связывающей зерна кварца, напряжении, приводящих к образованию в ней трещин, резко снижающих общую прочность смеси.
Наконец, следует учесть, что напряжения в пленках будут тем выше, чем больше будет перепад между температурой нагрева и температурой последующего охлаждения. Влияние этих факторов на условия выбивки стержней и подтверждение превалирующего значения напряжений, возникающих в пленках и приводящих к падению величины A, находим экспериментально. Полученные данные (рис. 5) ясно показывают, что при повторном нагреве и охлаждении прочность образцов резко падает.
Очевидно, что стекловидная пленка, содержащая в основном гидратированный дисиликат натрия, будет значительно более хрупкой, чем пленка, состоящая в основном из геля кремневой кислоты. Последняя, особенно в начальных условиях, будет обладать эластичностью и способностью частично релаксировать возникающие напряжения. Поэтому прочность предварительно высушенных образцов при повторном нагреве и охлаждении падает гораздо более резко, чем у образцов, предварительно продутых углекислым газом.
Таким образом, в случае высушенных и в случае продутых CO образцов при их нагреве до 400–600° C и последующем охлаждении в результате возникающих напряжений, приводящих к образованию в пленках трещин, работа, затрачиваемая на выбивку, оказывается минимальной.
Переходя к рассмотрению одного из главных вопросов – причин образования второго максимума, прежде всего следует отметить чрезвычайно быстрое увеличение работы, затрачиваемой на выбивку образцов, предварительно нагретых до 800° С. Столь резкое возрастание прочности при нагреве образцов до 800° С свидетельствует о том, что примерно при этой температуре происходит коренное изменение условий склеивания кварцевых зёрен наполнителя.
Причина образования второго максимума становится очевидной из рассмотрения двойной диаграммы состояния NaO – SiO (рис.6)
При нагреве жидкого стекла, обычно применяемых модулей, жидкая фаза начинает появляться при температуре 795° C, а при нагреве до 850° C (для модуля, равного 2,5) образуется полностью жидкий расплав.
Образовавшаяся жидкая фаза силикатного расплава обволакивает зерна кварцевого песка, «залечивает» появившиеся ранее трещины и при последующем охлаждении сообщает смеси высокую прочность, что приводит к значительному увеличению работы, затрачиваемой на выбивку смесей. Этот процесс происходит как в высушенных, так и продутых CO образцах. Однако, если в высушенных смесях происходит простое расплавление уже ранее образовавшегося силиката натрия, то в смесях продутых CO образуется расплав из самостоятельно существующих компонентов — главным образом NaHCO и SiO, получившихся в результате разложения жидкого стекла при продувании смеси углекислым газом. Это, по-видимому, является причиной меньшей величины второго максимума в образцах, продутых CO, так как условия образования расплава из отдельных составляющих в тонкой пленке связующего не могут считаться благоприятными. Подтверждением такого предположения являются опыты (рис. 7), проведенные при заливке стержней сталью 30Л. Они подтвердили общую
Рис. 6. Диаграмма состояния системы NaO – SiO.
закономерность — ярко выраженный максимум работы, затраченной на выбивку стержней, прогретых до температуры примерно 800°С.
Рис. 7.Работа, затраченная на выбивку из отливок стержней: 1—высушенных при 200° C; 2 — продутых CO. |
Вследствие значительного воздействия на стержень тепла залитого металла, малой теплопроводности смеси и очень медленного охлаждения стержней процессы образования жидкой фазы в пленках связующего материала в данном случае протекают более полно, чем при испытаниях образцов. Поэтому в смесях, продутых CO, при этом полностью осуществляется процесс образования жидкой фазы, вследствие чего наблюдается почти одинаковый ход кривых, характеризующих работу, затраченную на выбивку стержней, высушенных и продутых CO.
Таким образом, при нагреве смесей до 800°C образуется жидкий расплав, который энергично взаимодействует с кварцевым песком, растворяя последний, в результате чего четко выраженная граница раздела пленки и зерна стирается и образуется сплошной монолит, обладающий большой прочностью. В этих условиях появляется «второй максимум», резко затрудняющий выбивку стержней из отливок.
Рассмотрим причины снижения величины A при нагреве смесей до более высоких температур и условия образования «второго минимума».
При нагреве смесей до температур, превышающих 800° C, взаимодействие силикатного расплава с кремнеземом песка усиливается. Как известно, скорость диффузии возрастает по мере повышения температуры и уменьшения вязкости среды. Поэтому при высоких температурах диффузия SiO от поверхности растворения в расплав значительно возрастает и в целом процесс растворения кремнезема в силикатном расплаве ускоряется. В результате растворения содержание SiO в расплаве непрерывно увеличивается вплоть до предела растворимости при данной температуре согласно диаграмме состояния NaO–SiO. После достижения предела растворимости этот процесс прекращается.
При охлаждении образца из образовавшегося расплава начинают выпадать избыточные кристаллы сначала тридимита, а при температурах ниже 870° C — кварца. Выпавшие твердые кристаллы в затвердевшем расплаве играют роль инородных включений — надрезов, нарушающих сплошность пленок и концентрирующих напряжения, возникающие при охлаждении образца до комнатной температуры.
Наконец, следует учесть, что чем энергичнее идет процесс растворения SiO в расплаве, тем меньше становится относительное содержание в нем NaO.
Эти факторы являются основной причиной уменьшения работы, затрачиваемой на выбивку образцов при их предварительном нагреве до температур, превышающих 800° С. Естественно, что чем выше температура нагрева расплава, тем быстрее происходит растворение кремнезема и тем больше растворимость в расплаве. Следовательно, при охлаждении с более высоких температур расплав будет содержать относительно большее количество твердых инородных включений и сплошность силикатной пленки будет в большей степени нарушена, что будет приводить к дальнейшему уменьшению величины А.
Таким образом, после полного охлаждения пленка, склеившая зерна кварцевого песка, будет иметь не первоначальный состав, соответствующий, например, точке a на диаграмме состояния (рис. 6), а состав, в зависимости от температуры нагрева соответствующий, например, точкам б, в или г. С другой стороны, если образцы, один раз нагретые до 1200° C (точка б), вновь нагревать до 800, 1000 и 1200° C, то состав пленки останется неизменным. Следовательно, работа, затрачиваемая на выбивку вторично нагреваемых образцов, будет примерно одинаковой при всех температурах вплоть до 1200° C. Однако величина A должна быть ниже, чем при первом нагреве до 1200° C, так как при вторичных нагреве и охлаждении увеличиваются напряжения за счет модифицированных изменений кварца и возникающих термических напряжений. Подтверждение находим в опытах, приведенных на рис. 8.
Справедливость последней гипотезы подтверждается также опытами, при которых в качестве наполнителя вместо кварцевого песка был взят цирконовый. В этом случае не только не было обнаружено уменьшения прочности после достижения температуры второго максимума, но, наоборот, при нагреве до более высоких температур (1400° С) прочность непрерывно возрастала.
Рис. 8. Работа, затраченная на выбивку образцов из смеси на жидком стекле: 1 — предварительно высушенных при 200° C; 2 — предварительно прокаленных при 120° С. |
Одним из главных вопросов, имеющих основное значение для практического улучшения выбиваемости смесей, является максимальное расширение интервала первого минимума работы, затрачиваемой на выбивку стержней.
Выбором более сложных, например тройных систем с определенным соотношением компонентов, можно получить необходимую заданную температуру образования второго максимума.
Обратимся к диаграмме состояния системы NaO—AlO—SiO(рис. 9). Расчет по соответствующей изотерме диаграммы состояния (рис. 9) показывает, что для получения второго максимума при 1400° C в смесь, содержащую 5% жидкого стекла, модуля 2,7 (SiO—31,6%; NaO—12.0%), необходимо добавить 0,97% AlO.
Соответствующие опыты, проведенные с введением в смесь, содержащую 5% жидкого стекла, дополнительно 3% химически чистого AlO, количество которого по срав-нению с расчетным было значительно увеличено для более четкого выявления закономерности и ввиду возможного неполного усвоения
глинозема, подтвердили изложенные представления.
Рис. 9. Диаграмма состояния системы NaO—AlO—SiO.
Линия A—A соответствует сплавам, в которых модуль жидкого стекла равен 2.7.
Из опытов (рис. 10) видно, что при добавке AlO второй максимум, в соответствии с расчетными данными, «передвинулся» с 800 до 1400° С. При этом интервал первого минимума увеличился с 400—600 до 600—1200° C. Кроме того, величина второго максимума при добавлении в смесь AlO также заметно уменьшилась, что объясняется появлением на зернах наполнителя инертного слоя, непрореагировавшего с силикатом натрия глинозема, значительно снизившего адгезию пленок, а также, возможно, меньшей прочностью алюмосиликатов натрия. Исходные свойства смеси при добавлении глинозема изменились незначительно. При содержании 5% жидкого стекла и 3% AlO смесь после продувки CO имела предел прочности при сжатии 11.0 кГ/см 2, что вполне удовлетворяет технологическим требованиям.
1.4.Влияние неорганических добавок
1.4.1.Влияние глины
Одной из наиболее распространенных добавок, вводимых в формовочные смеси для улучшения выбиваемости, в том числе в смеси с жидким стеклом, является глина. В проведенных опытах она содержала 27% AlO. Расчёт показывает, что для образования второго максимума при 1200º C в смесь необходимо ввести 3,0% глины (0,81% AlO); при дальнейшем увеличении глины максимум соответственно будет перемещаться вправо и составлять 1300 и 1400º C.
Как видно из диаграммы состояния, изменением модуля стекла и введением в смеси надлежащего количества AlO могут быть выбраны силикатные системы, обеспечивающие получение второго максисума при 1500, 1600º C и более высоких температурах.
Рис.11.Работа, затраченная на выбивку образцов из смесей:
а —без глины; б—3% глины; в — 5% глины; г — 9% глины.
Результаты опытов показывают совпадение экспериментальных данных с расчетными (рис. 11). Они подтверждают также целесообразность введения в смеси с жидким стеклом глины и дают удовлетворительное объяснение эффективности ее действия как средства, существенно облегчающего выбивку стержней из отливок. Отметим, что при перемещении второго максимума вправо работа, затраченная на выбивку образцов, нагретых до температуры второго максимума, снижается в несколько раз (рис. 11). При значительном содержании в смесях глины (более 5%) хотя и резко облегчается выбивка стержней, однако исходная прочность оказывается низкой, что затрудняет практическое использование этих смесей.
Для улучшения исходных свойств целесообразно заменить глину веществом, не способным вступать в ионогенное взаимодействие с жидким стеклом и содержащим большое количество AlO.
1.4.2.Влияние шамота
В качестве инертного к жидкому стеклу материала, богатого AlO, был исследован шамот. Как и следовало ожидать, физико-механические свойства смеси при добавлении шамота не ухудшились (предел прочности на сжатие после продувки CO составлял 12—13 кГ/см2. Однако влияние шамота на температуру образования второго максимума не обнаруживалось (рис. 12) — второй максимум образовался при 800º С, т. е. при той же температуре, что и в смесях без добавок. Объясняется это, по-видимому, тем, что муллит (3AlO•2SiO) —основная составляющая шамота — инертен к расплаву жидкого стекла и не дает с последним тройных соединений.
При высоких температурах муллит очень устойчив и не подвергается разложению даже вблизи температуры плавления (1810° С).
При температуре 500—600° C из глины удаляется практически вся влага, в том числе и кристаллизационная, в то же время процесс муллитизации при этих температурах еще не начинается и химическая активность глинозема сохраняется, что должно способствовать смещению второго максимума в область более высоких температур. Действительно, из рис. 12, б видно, что смесь с добавкой 5% глины, прокаленной при 600° C, дает второй максимум прочности при 1200° C, т. е. там же, где и смесь с добавкой необожженной глины. Напротив, в глине, прокаленной при 1300° C, процесс муллитизации прошел практически полностью, поэтому ее добавление в смеси не изменило температуру образования второго максимума (рис. 12, б), так же как это имело место при добавлении шамота (рис. 12, а).
1.4.3.Влияние боксита
Опыты И. В. Валисовского и А. М. Лясса показали, что для снижения величины работы, затрачиваемой на выбивку стержней, необходимо применять материалы, содержащие AlO, способные образовывать тройные соединения с NaO и SiO. Одним из таких материалов, содержащих значительно большее количество AlO, чем глина, является боксит, в состав которого входят гидраргиллит Al(OH), бёмит AlOOH, диаспор HAlO. Все эти материалы при нагреве разлагаются с образованием активного γ — AlO.
Наиболее известными в России являются Краснооктябрьское, Североуральское и Тихвинское месторождение бокситов (табл. 1).
Таблица 1 Химический состав бокситов Месторо- ждение боксита | Содержание компонентов в % | Потери при про - каливани в % | |||||||
AlO | SiO | FeO | CaO | МgO | TiO | PO | |||
Красноок- тябрьское СевероуральскоеТихвинское | 40,1 55,6 47,12 | 3,1 3,09 19,4 | 30,9 23,4 13,51 | 0.46 1,92 1,6 | 0.2 — 0.31 | 1,9 2,3 — | 0,12 — 0,05 | 23,0 12,72 18,24 |
На рис. 13 приведены результаты испытания смеси с 3% боксита Тихвинского месторождения. Из опытов видно, что закономерность образования второго максимума за счет AlO, содержащегося в боксите, оказалась такой же, как при использовании химически чистого AlO и глины. При этом небольшая (3%) добавка боксита влияет так же, как и добавка 5—7% глины.
Физико-механические свойства смесей с добавками боксита высокие (предел прочности при сжатии образцов, продутых CO, 10— 12 кГ/см2), что создает возможности для их практического использования, особенно если учесть, что СССР обладает огромными запасами боксита.
Таким образом, введение в смеси с жидким стеклом небольших добавок боксита позволяет расширить зону, благоприятную для условий выбивки («первый минимум»), с 400—600° C (рис. 13) до 400—1000° C (рис. 13) и в несколько раз сократить трудоемкость выбивки стержней после их нагрева до температуры образования второго максимума.
По данным Ново-Краматорского машиностроительного завода в экспериментальных условиях были получены хорошие результаты при одновременном введении в смеси с жидким стеклом 3% боксита и 12% шамотного порошка (табл. 2).
Таблица 2
Зерновой состав шамотного порошка (глинистая составляющая 18,29%)
№ сит | Остаток в % | № сит | Остаток в % | № сит | Остаток в % | № сит | Остаток в % | |||
2.5 1.6 1,0 | 1,0 12,4 24.6 | 063 04 0315 | 17,47 8,5 3,2 | 020 016 010 | 3,2 5.8 2,6 | 0063 005 Тазик | 1.5 1,0 0,44 |
Рис. 14. Диаграмма состояния системы NaO–CaO–iO.
(рис. 14) максимальная температура плавления тройных соединений, лежащих на линии АА и содержащих SiO: NaO= 2,5—3,0, составляет 1200° С. Расчет показывает, что для достижений этой температуры плавления при 5% жидкого стекла достаточно ввести в смесь 0,5— 0,6% чистой окиси кальция. Однако смесь, содержащая даже такое незначительное количество CaO, обладает очень плохими физико-механическими свойствами: малой прочностью и большой осыпаемостью стержней, по-видимому, из-за большой гигроскопичности окиси кальция. Предварительное гашение CaО, добавление в смесь необходимого количества воды или использования гидроокиси кальция Ca(OH) не улучшило существенно свойства смеси.
1.4.4.Влияние мела
Вместо окиси кальция в опытах был применен мел в количестве 1,1%, необходимом для получения второго максимума при 1200° С. Смесь обладала удовлетворительными технологическими свойствами. Предел прочности образцов при сжатии после продувки СО составлял 12 кГ/см2. Появление второго максимума (рис. 15) наблюдалось при температуре 1200° C, что соответствует расчету. Увеличение в 3—5 раз количества мела, вводимого в смесь, практически не изменяет положения второго максимума, что вытекает из рассмотрения диаграммы состояния (рис. 14).
Таким образом, добавка мела в стержневую смесь подтвердила справедливость описанных общих закономерностей и показала перспективность применения мела в качестве средства, облегчающего выбивку стержней из отливок.
1.4.5.Влияние окиси магния
Добавление окиси магния в смесь в небольших количествах (до 0,6%) позволяет в соответствии с тройной диаграммой NaO–MgO–SiO (линия A—A на рис. 16) повысить температуру второго максимума работы выбивки до 1400° C (рис. 17).
Однако смесь, содержащая окись магния, так же, как и CaO, гигроскопична, поэтому для получения удовлетворительных физико-механических свойств смеси в нее необходимо вводить дополнительное количество воды, либо предварительно «гасить» MgO.
Рис.17.Работа,затраченная на выбивку образцов из смеси с добавкой 0,5% MgO; 1 — высушенных при 200° C; 2 — продутых CO. |
1.4.6.Влияние добавок доменного шлака
Исследовали возможность использования гранулированных доменных шлаков Енакиевского металлургического завода в составе жидкостекольных смесей для улучшения их выбиваемости[5]. Из представленной схемы (рисунок) следует, что для улучшения выбиваемости быстротвердеющих смесей, подвергнутых нагреву до 700—900°С, необходимо предотвратить образование или снизить количество стекловидного вещества — продукта взаимодействия щелочных силикатов связующего с кремнеземом наполнителя. В состав смесей вводят вещества, отличающиеся большей химической активностью к щелочным силикатам жидкого стекла, чем кремнезем наполнителя.
Этим объясняется улучшение выбиваемости смесей известными добавками окислов неорганических веществ (Аl2Оз, MgO, CaO) карбонатов (СаСОз, MgCO3), соединений 2CaO. Si02 в различной форме и чистых металлов, например Аl и Mg. Доменные шлаки представляют собой комплексную добавку неорганического вещества и содержат 40—50% CaO; 3—5% MgO;
6—10% Аl20з. По гранулометрическому составу они незначительно отличаются от кварцевых песков (~60% составляют зерна размером до 2, 5 мм, около 20% — 2, 5—5 мм), что не вызывает затруднений при приготовлении смесей. Установлено, что применение шлаков в состоянии поставки с влажностью 20—25% невозможно в связи с резким ухудшением свойств смесей. Использование высушенных шлаков из-за их высокой гидравлической активности приводит к снижению пластичности и живучести смесей. Оптимальные свойства смесей достигаются при введении в их состав доменных шлаков влажностью 8—10% и размером зерен не более 7 мм.
Применение даже 10—15% шлака снижает в 2—5 раз работу выбивки смесей. Еще в большей степени уменьшается работа выбивки при 20% шлака.
Смеси с 10 и 15% шлака были использованы для изготовления стержней отливок весом от 0, 5 до 3, 0 т. При этом трудоемкость выбивки стержней из жидкостекольных смесей с доменным шлаком и песчано-глинистых смесей практически не отличалась.
1.4.7.Влияние фосфорита
Интересные результаты при использовании неорганических добавок были получены на Бежицком сталелитейном заводе П. А. Лобановым и Н. М. Козьминым. Они установили, что добавка в смеси фосфорита резко облегчает выбивку стержней (табл. 3). При этом следует учесть опасность насыщения поверхности отливок избыточным содержанием фосфора.
Таблица 3
Влияние добавки фосфорита на выбиваемость смесей с жидким стеклом.
Компоненты смесей | Состав в весовых частях | |||
Луховицкий песок ............................. Тихвинский боксит ........................... Фосфорит ........................................... Жидкое стекло ................................... Мазут .................................................. Вода .................................................... | 100,0 ─ ─ 6,5 0,5 1,0 | 100,0 3,5 ─ 6,5 0,5 1,0 | 100,0 ─ 1,0 6,5 0,5 1,0 | 100,0 ─ 3,0 6,5 0,5 1,0 |
Число ударов копра до разрушения образцов ............................................. | 35 | 8 | 3 | 2 |
1.5.Влияние органических добавок
В первом разделе главы было показано, что многие исследователи рекомендуют введение в смеси органических добавок, которые при выгорании должны разрывать пленку связующего материала и тем самым облегчать выбивку стержней. Такое утверждение в качестве общего принципа не может быть принято.
Выгорание органических связующих добавок происходит, как правило, при температурах более низких, чем 800° C, а при 800° C начинается образование жидкой фазы силикатов. Поэтому, если прорывы пленок вследствие выгорания органических добавок имели место, то они исчезнут, как только произойдет расплавление силикатов и образование жидкой фазы[10,11].
Поэтому никакие органические выгорающие добавки не могут изменить температуру образования второго максимума и введение таких добавок с целью расширения благоприятного для выбивки интервала температур (первого минимума) является бесполезным. Это полностью подтверждается экспериментальными данными, полученными при введении в смеси с жидким стеклом многих органических добавок, в том числе часто рекомендованных в нашей стране и за рубежом — раствора битума в уайт-спирите (рис. 18, а), мочевины (рис. 18, б), древесной муки (рис. 18, в), древесного пека, сахара и др.
При всех испытаниях органических добавок температура образования второго максимума 800° C оставалась неизменной. Это, однако, не означает, что введение органических добавок для облегчения выбивки стержней во всех случаях является бесполезным.
Прежде всего при низких температурах прогрева стержней до 400º C введение органических добавок может содействовать прорыву пленок и снижению работы, затрачиваемой на выбивку стержней. При высоких температурах, превышающих 800°C, в условиях недостатка кислорода может происходить неполное сгорание органических добавок, в результате чего между силикатной пленкой связующего вещества и зерном наполнителя образуется инертная прослойка сажистого углерода.
Известно, что инертные прослойки снижают адгезию пленок и уменьшают прочность смесей. Поэтому введение таких добавок может уменьшить абсолютное значение величины A, при температуре образования второго максимума или близких к ней.
Положительные результаты могут быть достигнуты лишь в том случае, если органическая добавка будет расположена на поверхности зерен наполнителя под силикатной пленкой.
Поэтому при выборе органических добавок следует отдавать предпочтение порошкообразным (рис. 18, в), которые предварительно (перед добавкой жидкого стекла) необходимо смешивать с наполнителем.
Растворы в уайт-спирите добавок типа битума имеют меньшее поверхностное натяжение, чем водный раствор силиката натрия. Если поэтому их вводить в смеси после жидкого стекла, то они не будут достаточно эффективны. Если же их ввести в смесь до жидкого стекла, то при перемешивании вязкость последнего очень быстро возрастает, что будет препятствовать вытеснению раствора битума на поверхность водного раствора силиката натрия. Благодаря этому положительное влияние добавки битума сохранится, хотя оно окажется менее эффективным, чем при применении порошкообразных органических добавок (рис. 18, а).
Наименьший эффект будет получен при использовании водных растворов, например, мочевины (рис. 18, б).
1.6.Влияние хрупкой усадки
Результаты опытов (рис. 19) на отливках при разном отношении толщины стенок отливки к радиусу стержней показали, что второй максимум образуется примерно при 800° C, а те же смеси с добавкой 3% глины не достигли второго максимума даже при 1150° C(). Аналогичные результаты были получены при введении в смеси химически чистого AlO ,MgO, мела и боксита[10,11].
Рис.19.Работа, затраченная на выбивку из отливок стержней, продутых CO и изготовлен-ных из смесей: 1 — кварцевого песка с 4% жидкого стекла; 2—кварцевого песка с 3% глины и 4% жидкого стекла. |
Сопоставляя результаты испытаний образцов, не подвергавшихся действию жидкого металла, и образцов, заливавшихся металлом, можно заметить, что работа, затрачиваемая на выбивку стержней при температуре их нагрева, соответствующей второму максимуму или близкой к ней, в последнем случае в несколько раз выше, чем в первом. Основная причина этого заключается в том, что стержни, установленные в литейной форме, подвергаются не только нагреву, но и действию сил сжатия, проявляющихся при усадке отливок в процессе их остывания.
Чем тоньше зерновое строение наполнителя или специальной добавки, тем выше величина работы, затрачиваемой на выбивку стержней. С другой стороны, для более активного химического взаимодействия веществ их целесообразно применять в тонкоразмолотом виде.
Таким образом, специальные добавки, вводимые в смесь в тонкоизмельченном состоянии, обеспечивают значительное расширение температурного интервала первого максимума, но в зажимаемых местах стержней, прогревающихся до температуры второго максимума или близких к ней, величина работы, затрачиваемой на выбивку, остается значительной. Для снижения работы выбивки необходимо принимать дополнительные меры, к которым относится, например, обеспечение «хрупкой» усадки стержней при их охлаждении. Это может быть достигнуто принудительным охлаждением стержней воздухом или водой, ускоренной выбивкой отливок из форм, применением оболочковых стержней, двухслойных стержней с облегченной сердцевиной и др.
1.7.Влияние ускоренного охлаждения
Эффективность ускоренного охлаждения стержней видна из опытов, проведенных со смесью, содержавшей кварцевый песок, 5% жидкого стекла и 1 % NaOH[10].
предварительно нагретых до температуры образования второго максимума (800° С), можно примерно в 3 раза сократить величину А. Аналогичные результаты были получены при увеличении скорости охлаждения стержней, залитых металлом.
Здесь также трудоемкость выбивки стержней из отливок при применении методов ускоренного охлаждения сократилась примерно в 3 раза (рис. 21). Это подтверждает представления о когезионном типе разрушения смесей и влиянии на прочность стержней напряжений, возникающих в пленках при их охлаждении.
1.8.Влияние количества жидкого стекла
Из расчетов прочности смесей, известно, что при данном наполнителе и данном связующем материале в случае когезионного типа разрушения прочность смеси
Рис. 22. Работа, затраченная на выбивку стержней, высушенных при 200°C из стальных отливок: 1 — смесь с 8% жидкого стекла; 2— то же с 6%; 3 — то же с 4%. |
будет непосредственно зависеть от количества введенного в нее связующего материала. Следовательно, чем больше жидкого стекла будет введено в смесь, тем труднее окажется выбивка стержней из отливок(рис.22).
Поэтому одним из действенных средств облегчения выбивки является максимальное (допустимое по другим технологическим показателям) снижение количества жидкого стекла в смеси.
1.9.Влияние модуля жидкого стекла
Изменение модуля стекла в пределах от 2.0 до 3.0 при незначительном изменении содержания NaO в пределах 11,8—12.1 до 14,2—14,6% (ГОСТ 8264—56) мало влияет на условия выбивки стержней[11].
Существенное повышение модуля до 3,5 благоприятно сказывается на улучшении выбивки, но одновременно заметно ухудшаются технологические свойства смесей — пластичность, длительность сохранения физико-механических свойств, что значительно затрудняет использование смесей в производстве[6]. Поэтому более целесообразной является работа на жидком стекле низкого модуля (в пределах, предусмотренных ГОСТ 8264—56) с одновременным принятием мер для облегчения выбивки стержней в соответствии с приведенными выше положениями.
2.Улучшение выбиваемости жидкостекольных наливных самотвердеющих смесей
2.1.Изменение прочности НСС в зависимости
от температуры нагрева
Одним из недостатков жидкостекольных НСС, тормозящих их более широкое применение в литейных цехах, является плохая выбиваемость из отливок. Причина последней – образование при 600-800ºC легкоплавких силикатов, которые при охлаждении приводят к спеканию смеси и резкому повышению её прочности. Для улучшения выбиваемости в смеси рекомендуют вводить различные добавки, однако надёжных критериев выбора этих добавок практически нет. Органические добавки чаще всего рекомендуют для улучшения выбиваемости смесей из чугунных отливок, а неорганических из стальных. Для улучшения выбиваемости жидкостекольных НСС пытались вводить в них те же вещества, что и для улучшения выбиваемости обычных пластичных жидкостекольных смесей (уголь, графит, кокс, мазут, опилки, глину, мел, пульвербакелит и др.). Однако практика показала, что многие из этих веществ снижают текучесть, устойчивость пены и прочность НСС, а также ухудшают другие свойства НСС.Таблица 4
Составы формовочных смесей, применяемых для исследования выбиваемости
Смесь | Состав, мас. ч. | |||||
Кварцевый песок | Феррохромо- вый шлак | Жидкое стекло | Бентонит | Вода | ДС - РАС | |
Пластичная жидкостекольная Пластичная самотвердеющая НСС Песчано-глинистая | 100 95 95 100 | ― 5 5 ― | 6 6 6 ― | ― ― ― 10 | 2 2 2 8 | ― ― 0,07 ― |
В связи с этим изучена прочность смесей после нагревания и охлаждения[7]. Их состав приведён в табл. 4. Исследования показали, что при заливке чугуном технологических проб максимальная температура прогрева НСС в центре образца, т. е. на глубине 25 мм равна 800°C, а при заливке сталью – 1200°C. Поэтому добавки, снижающие прочность НСС после нагрева до 800°C, считались эффективными для чугунного литья, а после прогрева до 1200°C – для стального.
Выбиваемость НСС и пластичной самотвердеющей смеси (см. табл. 4), вследствие наличия в них шлака, значительно лучше, чем обычной жидкостекольной. Несколько лучшая выбиваемость НСС по сравнению с пластичными самотвердеющими смесями обусловлена большей пористостью НСС. Однако выбиваемость ее, особенно при нагреве свыше 700°C, хуже, чем у песчано-глинистых смесей.
Рис.23.Влияние температуры прогрева на прочность при сжатии различных смесей: 1-самотвердеющей; 2-обычной жидкост- кольной; 3-НСС; 4-песчано-глинистой. |
Кривая прочности обычной жидкостекольной смеси (см. рис. 23, кривая 2) имеет два максимума и два минимума. Такие же данные получены исследователями ЦНИИТМаша. Кривые прочности пластичной жидкостекольной самотвердеющей смеси (кривая 1) и НСС (кривая 3) имеют три характерных участка: резкое снижение прочности при нагреве до 200°C, небольшое изменение при 200–600°C; значительное повышение при 600–1000°C и еще более высокое –при температуре выше 1000° С.
Снижение прочности смесей при нагреве до 200°C объясняется испарением воды гелем, а также различными коэффициентами термического расширения кварцевого песка и геля кремневой кислоты. В табл. 5 приведены результаты изменений объема жидкостекольно-шлаковой композиции и НСС при нагреве их до 600° С.
Таблица 5
Изменение объема композиции и НСС в зависимости от температуры нагрева
Смесь | Расширение (+) и усадка (–). % при температуре, °С | |||||
100 | 200 | 300 | 400 | 500 | 600 | |
Жидкостекольно-шлаковая композиция НСС | +0,08 +0,08 | –4,40 +0,20 | –4,60 +0,40 | –4,50 + 0,75 | –4,40 + 1,05 | –4,20 + 1.55 |
В результате нагрева в пленке композиции, скрепляющей зерна наполнителя, возникают внутренние напряжения, приводящие к образованию трещин и частичному отрыву пленки композиции от зерна песка. Поэтому сушка стержней или форм из НСС, выдержанных после изготовления более 2 ч, уменьшает их прочность. Особенно сильно снижается прочность, если стержни и формы из НСС выдержаны до сушки сутки и более.
При прогреве НСС до 700–720°C размягчение жидкостекольно-шлаковой композиции не наблюдается, т. е. она находится еще в твердом состоянии. После охлаждения прочность смеси существенно не изменяется и выбиваемость ее вполне удовлетворительна.
Как показали исследования А. П. Семика, в интервале температур 720–1060°С жидкостекольно-шлаковая композиция плавится. Образующаяся жидкая фаза взаимодействует с зернами песка и приводит к спеканию смеси при охлаждении, в результате чего прочность НСС возрастает, а выбиваемость ухудшается. Вязкость композиции при 720—1060°C превышает 200 Па • с, поэтому проникающая способность ее в поры смеси небольшая. При нагреве смеси выше 1060°C вязкость ее вследствие расплавления композиции снижается и при 1100°C составляет 8 Па • с. Благодаря этому резко возрастает проникающая способность композиции в поры между наполнителем, вследствие чего (после охлаждения) прочность НСС значительно увеличивается, а выбиваемость резко ухудшается.
О расплавлении связующей композиции можно судить по уменьшению прочности НСС, измеренной непосредственно при высоких температурах (табл. 6).
Наблюдалось, что при нагреве до800°C после приложения нагрузки образец рассыпался на куски, а при 800ºC и выше начинал течь.
Нерастворившаяся часть шлака является включениями в связующем и частично снижает прочность НСС, поэтому выбиваемость
Таблица 6
Влияние температуры на прочность НСС
Время выдержки образцов в печи, мин | Прочность на сжатие, кгс/см (9,8-10 Па), при нагреве, °C | ||||||
200 | 400 | 600 | 800 | 1000 | 1200 | 1300 | |
5 30 45 60 | 10,0 9,0 8,5 8,0 | 8,5 7,5 7,0 6,5 | 7,0 6,0 5,8 5,0 | 2,0 1.8 1,0 0,5 | 1,0 0,5 0,2 0 | 0,3 0 0 0 | 0 0 0 0 |
НСС немного лучше, чем у обычных жидкостекольных смесей, не содержащих феррохромового шлака.
2.2.Влияние усадки отливки
Кроме температуры, на выбиваемость НСС в значительной мере влияет усадка отливки. Об этом свидетельствуют результаты экспериментов с различными железоуглеродистыми сплавами по заливке в форму при 1550°C (табл. 7).
Таблица 7
Влияние усадки сплавов на выбиваемость НСС
Сплав | Усадка сплава, % | Работа выбивки, Дж, при плотности смеси, 10 кг/м | |||
1,1 | 1.3 | 1,5 | 1,7 | ||
Серый чугун СЧ 15-32 Половинчатый чугун Белый чугун Сталь ЗОЛ | 0,9—1,1 1,4—1,6 1,9—2,1 1.9—2,1 | 5,0—5,5 6,0—6,5 7,0—8,0 7,5—8,0 | 14—15 18—20 23—25 24—25 | 46—48 62—64 78—80 78—80 | 120—125 156—160 195—205 195—205 |
Поскольку усадка стали больше, чем чугуна, выбиваемость НСС из стальных отливок в 1,5–1,6 раза хуже, чем из чугунных вследствие увеличения сил сжатия на стержень.
... смеси, состоящие из полевого шпата, кремнезема, каолина и жидкого стекла. Перейдем к экспериментальному рассмотрению условий образования пригара на стальных и чугунных отливках при использовании смесей с жидким стеклом.2.Методы качественной оценки пригара.2. КАЧЕСТВО ПОВЕРХНОСТИ ОТЛИВОК Шероховатость отличается от пригара тем, что 1) концентрация окислов на поверхности металла отливки ...
... состава для определенных видов литья, и они не выходят за пределы этого предприятия. Основным недостатком этого метода является усложнение технологии 3.9. Изготовление форм из высокоогнеупорных и химически инертных формовочных материалов для сокращения пригара. В литейном производстве при изготовлении разовых форм большое распространение получили песчано-глинистые смеси. Объясняется это ...
... - дальнейшее развитие, совершенствование и разработка новых технологических методов обработки заготовок деталей машин, применение новых конструкционных материалов и повышение качества обработки деталей машин. Наряду с обработкой резанием применяют методы обработки пластическим деформированием, с использованием химической, электрической, световой, лучевой и других видов энергии. Классификация ...
... осуществлять трудовую деятельность более эффективно, творчески, а также способствует выходу личности на новые уровни своего развития. 1.2 Педагогические подходы к реализации программы профессиональной подготовки заливщиков металла Учебные занятия, как правило, проводятся в виде лекций, консультаций, семинаров, практических занятий, лабораторных работ, контрольных и самостоятельных работ, ...
0 комментариев