3. Выбиваемость ЖСС с жидкими отвердителями
3.1.Выбиваемость ЖСС с ацетатом этиленгликоля
Повышенное внимание литейщиков к жидкостекольным смесям с жидкими отвердителями объясняется рядом важных преимуществ этих смесей по сравнению с другими ЖСС: пониженным содержанием связующего при больших прочностных показателях, лучшей выбиваемостью из отливок и гарантией высокого качества поверхности.
Применяющиеся за рубежом жидкие отвердители, выпускаемые специализированными фирмами, представляют собой ацетаты глицерина или этиленгликоля. В нашей стране промышленное производство таких отвердителей отсутствует. В 1975 г. НПО «ЦНИИТмаш» были разработаны ЖСС с жидким отвердителем пропиленкарбонатом— сложным эфиром пропиленгликоля и угольной кислоты. Выпускается он опытными партиями ПО «Ангарскнефтеоргсинтез». Смеси с пропиленкарбонатом применяют в настоящее время на 13 заводах страны при получении стержней и форм для стальных, чугунных и алюминиевых отливок.
Из смесей с пропиленкарбонатом изготовляют: стержни для стальных отливок — на Харьковском турбинном заводе им. Кирова, Старо-Краматорском заводе им. Орджоникидзе, ПО «Электротяжмаш» (г. Харьков), «Сибтяжмаш», «Сибэнергомаш», стержни для чугунных отливок — на Гомельском и Сумском заводах «Центролит», формы для чугунных отливок — на Московском чугунолитейном заводе «Станколит» и ПО «Ташкентский тракторный завод», стержни повышенной сложности для алюминиевых отливок — на Харьковском заводе им. Малышева и др.
Однако поставка пропиленкарбоната литейному производству ограничена, и промышленный выпуск его в ближайшие годы не планируется. Кроме того, смеси с пропиленкарбонатом имеют ограниченную живучесть (Ж) 10...12 мин, затрудняющую изготовление крупных форм и стержней, особенно в летний период. Ж смесей с пропиленкарбонатом можно увеличить до 25 мин с помощью сложных эфиров фталевой кислоты, хорошо сочетающихся с пропиленкарбонатом. Однако использование на практике этого метода регулирования Ж связано с определенными неудобствами. Поэтому НПО «ЦНИИТмаш» в последние годы совместно с химиками ведет работы по получению других более технологичных сложноэфирных отвердителей с использованием относительно недефицитного и сравнительно дешевого сырья. К таким отвердителям относятся ацетаты этиленгликоля[3].
В результате исследований, проведенных НПО «ЦНИИТмаш» совместно с Дзержинским ПО «Синтез», разработана и уточнена технология синтеза отвердителей на основе ацетатов этиленгликоля, определен состав отвердителей в соответствии с требованиями литейного производства.
С помощью разработанной технологии можно получать отвердители различной активности с заранее заданными свойствами. Ж и скорость твердения смесей может регулироваться от 8...10 мин до 60.,..90 мин.
На рис. 26,а, б видна кинетика твердения смесей и Ж при применении отвердителей четырех марок. Различным маркам АЦЭГ даны условные обозначения: 1Б (быстрый) с Ж =8.. 10 мин, 2СБ (средне быстрый) с Ж=18...20 мин, ЗСМ (средне медленный) с Ж==27...30 мин, 4М (медленный) с Ж=50... 55 мин. В случае необходимости может быть получена пятая марка АЦЭГ 5ММ с Ж=90 мин. Смеси содержат 3,5 масс. ч. ЖС и 0,35 масс. ч. ацетатов этиленгликоля.
В Польше разработан и находит применение отвердитель «Флодур», представляющий собой также ацетат этиленгликоля. Разработанные автором АЦЭГ не только не уступают, но и превосходят по прочностным характеристикам смеси с отвердителем «Флодур».
Рис.26. σ(а) и жидкотекучесть (б) смесей различных марок АЦЭГ
Сравнительные свойства смесей (основа, масс. ч.: 100 люберецкого песка; 3,5 ЖС M=2,5; p=1480 кг/м) с 0,35 масс. ч. отечественного отвердителя АЦЭГ (смеси 1, 3) и 0,4 масс. ч. отвердителя «Флодур» (смеси 2, 4) приведены ниже.
Ж, мин | 1 | 2 | 3 | 4 |
13 | 12 | 22 | 26 | |
,Мпа,через,ч: | ||||
1 | 1,57 | 0,53 | 0,83 | 0,47 |
8 | 2,13 | 1,1 | 2,6 | 1,66 |
14 | 4,4 | 3,5 | 5,0 | 4,1 |
Выбиваемость смесей оценивалась по трудоемкости удаления опытных стержней сечением 100Х100 мм и высотой 180 мм из стальной отливки (470Х170Х180 мм, стенка толщиной 35 мм, масса 150 кг). Трудоемкость выбивки смеси для СО--процесса, содержащей 6 масс. ч. ЖС принята за 100%, ЖСС и ПСС (с 6 масс. ч. ЖС) составила 68%, ЖСС с АЦЭГ (3,5 масс. ч. ЖС) — 38%, ЖСС с АЦЭГ (2,5 масс. ч. ЖС) — 12,5%, ЖСС с синтетической смолой— 7,5%.
При введении в смеси с АЦЭГ сахаросодержащих веществ или специальных диспергирующих поверхностно-активных ве-
Рис. 27.Влияние относительной влажности воздуха (%) на кинетику твердения:
1—30; 2— 50; 3 — 70; 4 — 90.
ществ содержание ЖС может быть снижено с 3,5 до 2,5 масс. ч. при сохранении высоких прочностных свойств и низкой осыпаемости, что позволяет почти в 3 раза улучшить выбиваемость, приблизив ее к выбиваемости ЖСС с синтетическими смолами. По данным автора, снижение содержания ЖС на каждые 0,5 масс. ч. (без введения каких-либо добавок) улучшает выбиваемость смесей со сложноэфирными отвердителями примерно в 2 раза.
Жидкие отвердители на основе АЦЭГ выгодно отличаются от других сложноэфирных отвердителей, в частности пропиленкарбоната, тем, что позволяют снизить содержание ЖС в смеси путем понижения без ощутимой потери прочностных свойств в пределах допустимой осыпаемости.
Так, ЖС можно снизить с 1480...1500 до 1400 и 1450 кг/м при том же содержании в смеси разбавленного ЖС и тем самым дополнительно улучшить ее выбиваемость. В смесях с пропиленкарбонатом снижение плотности ЖС приводит к заметному сокращению Ж, падению прочности и повышению осыпаемости.
На кинетику твердения и прочность смесей большое влияние оказывает относительная влажность (W) воздуха (рис. 27). Чем выше относительная W, тем медленнее темп нарастания прочности и ниже ее абсолютные значения. С повышением W с 30 до 90%, что соответствует дождливой сырой погоде, прочность снижается почти в 3 раза, однако это не оказывает существенного влияния на качество готовых стержней и возможность их дальнейшего использования.
Отличительной особенностью смесей со сложными эфирами является их хорошая сыпучесть из-за низкого содержания в смеси жидкой фазы. Вследствие этого смеси обладают легкой уплотняемостью, что позволяет использовать виброуплотнение взамен встряхивания, прессования, пескометной формовки и пр.
Для смесей с жидкими отвердителями характерен высокий темп нарастания прочности после окончания живучести, что имеет весьма важное значение для сокращения цикла изготовления форм и высвобождения оснастки. Извлечение моделей из затвердевшей формы можно осуществлять при достижении смесью манипуляторной прочности, величина которой для такого типа смесей <0,4 МПа. На рис. 28 .представлены соответствующие данные по кинетике нарастания прочности смесей со сложными эфирами пои различной Ж, изменяющейся в интервале 7...110 мин. Смеси приобретают манипуляторную прочность в течение времени, превышающего Ж примерно в 1,5—2 раза.
Рис. 28. Кинетика твердения смесей с различной живучестью, мин:
1—1; 2—14; 3—23; 4—38; 5—84; б—110
Смеси с жидкими отвердителями могут заменять жидкостекольные ЖСС,. ПСС, СО- процесс, а, в ряде случаев, и ЖСС с синтетическими смолами и применяться для изготовления форм и стержней.
ЖСС со сложноэфирными отвердителями и технология изготовления из них форм и стержней имеют следующие преимущества:
высокую общую и поверхностную прочность форм и стержней при пониженном содержании связующего;
улучшенную выбиваемость по сравнению с выбиваемостью известных жидкостекольных смесей;
удобство работы с жидкими отвердителями вместо порошкообразных (феррохромового шлака или нефелинового шлама);
повышение чистоты и качества , резкое сокращение дефектов и брака отливок по ужимам., пленам и песочным раковинам;
заметное снижение трудоемкости изготовления форм и стержней;
небольшую токсичность и соответствие повышенным санитарно-гигиеническим требованиям.
К недостаткам смесей со сложными эфирами можно отнести:
более высокую, чем у ЖСС с синтетическими смолами, хрупкость, что может вызывать поломки при изготовлении стержней повышенной сложности;
более трудоемкую, чем у ЖСС со смолами, выбиваемость из отливок;
пониженную водостойкость, в связи с чем рекомендуется применять преимущественно самовысыхающие противопригарные покрытия.
Смеси с АЦЭГ сопоставимы по стоимости со смесями для СО - процесса (с учетом стоимости углекислого газа).
3.2.Выбиваемость ЖСС с жидким
кремнийорганическим отвердителем.
Жидкостекольные самотвердеющие смеси с жидким кремнийорганическим отвердителем предназначены для повышения качества поверхности отливок и используются как облицовочные смеси для стержней и форм ответственных отливок различных отраслей машиностроения , а также в качестве единой смеси для особо сложных стержней в целях предотвращения образования поверхностных дефектов.
В качестве отвердителей и катализаторов твердения применяют жидкие кремнийорганические полимеры и органические мономеры. Органические мономеры вводят в ЖС перед приготовлением смеси; эта композиция может храниться в закрытой тape в течение длительного времени.
Содержание мономера и кремнийорганического полимера определяют живучесть и прочность смеси. В отличие от жидкостекольных смесей, отверждаемых сложными эфирами, для приготовления смеси с жидкими кремнийорганическими отвердителями может применяться ЖС с М=2,2...3,2, однако лучшие результаты достигаются при использовании высокомодульного стекла. Свойства смесей: живучесть Ж=5...120 мин; через 1 ч (при Ж—60 мин) —0,1...0,2 МПа; (через 24 ч — 4,5...6 МПа; осыпаемость через 24 ч—0,05%; остаточная прочность (после нагрева до 800°С и охлаждения — 1 МПа. Смеси могут отверждаться с помощью СО без последующего ухудшения прочностных свойств при хранении стержней и форм.
Жидкостекольные смеси с жидкими кремнийоргаиическими отвердителями позволяют получить смеси с 1...3 масс. ч. ЖС, улучшить качество поверхности и точности отливок (Rz 40 мкм. 3—4-й классы чистоты).
Рассмотрим особенности выбиваемости смесей с жидкими кремнийорганическими отвердителями[14]. На рис. 29 видна температурная зависимость для смеси с кремнийорганическим
Рис. 29. Зависимость жидкостекольной смеси
(3 масс. ч. ЖС, М ==2,2) на
кварцевом песке от
температуры.
твердителем (кривая 1) и для смеси с пропиленкарбонатом (кривая 2). Если в низко температурной области (Т=400... 600°С) выбиваемость обеих смесей мала, то в высокотемпературной (800...1000°С) смесей с кремнийорганическим отвердителем в 1,5 раза меньше, а соответственно выбиваемость лучше. Таким образом, применение кремнийорганического отвердителя позволяет улучшать выбиваемость смесей главным образом в высокотемпературной области Существенное влияние на выбиваемость смесей с кремнийорганическими отвердителями оказывает количество ЖС в смеси и М. На рис. 30 видно изменение после нагрева до 8OO°C и охлаждения в зависимости от содержания ЖС в смеси. Для смеси с пропиленкарбонатом (.кривая 3) и кремнийорганическим отвердителем (кривая 2) существенное различие в выбиваемости наблюдается у смесей, содержащих>3 масс. ч. ЖС (М=2,2); у смеси с 2 масс. ч. ЖС (М=2,2) влияние отвердителя на выбиваемость смесей на кварцевом песке практически нивелируется.
Зависимость от содержания связующего существенно меняется при применении высокомодульного ЖС (М=3,1), что возможно в случае использования кремнийорганического отвердителя. С уменьшением содержания ЖС (М=2,2) с 3 до 2 масс. ч. снижается почти в 3 раза (кривая 1).
Сопоставить результаты испытаний смеси с высокомодульным ЖС, отверждаемой пропиленкарбонатом, не представляется возможным из-за ее малой Ж.
Рис. 30. Изменение смеси в зависимости от содержания ЖС.
Для смесей с пониженным содержанием ЖС выбиваемость улучшается только в том случае, если при их приготовлении не используется ЖС с низким модулем. Применение таких смесей показало, что улучшение Ж, прочности, осыпаемости за счет снижения М жидкого стекла нивелирует эффект улучшения выбиваемости от снижения его содержания и даже может привести к ухудшению выбиваемости.
Необходимо отметить еще одну особенность выбиваемости смесей с кремнийорганическим отвердителем: для стержней из смеси на кварцевом песке с 1,5...2,0 масс. ч. ЖС продолжительность гидровыбивки оказалась такой же, как для стержней из смоляных смесей, однако при выбивке с помощью механического инструмента продолжительность удаления жидкостекольных смесей в несколько раз больше продолжительности удаления смоляных.
Смеси с ЖС и кремнийорганическим отвердителем, использующие в качестве наполнителя .хромит или хромомагнезит, отличаются рядом особенностей. Содержание ЖС в этих смесях составляет 3,5...4,5 масс. ч., что в 2—2,5 раза меньше, чем в применяемых хромитовых смесях, отверждаемых СО. Хромитовые и хромомагнезитовые смеси с ЖС и кремнийорганическим отвердителем могут отверждаться с помощью СО без последующего ухудшения свойств при хранении стержней и форм.
Работа выбивки жидкостекольных хромитовых смесей с кремнийорганическим отвердителем в 10—15 раз меньше работы выбивки хромитовых смесей с 7...10 масс. ч. ЖС. В интервале нагрева 400...1000° С работа выбивки этих смесей практически постоянная (температурные экстремумы выбивки не наблюдаются). Другой аномалией жидкостекольной хромитовой смеси с кремнийорганическим отвердителем является слабая зависимость работы выбивки от модуля ЖС в интервале 400...1000 ° С при одинаковом его содержании.
Применение кремнийорганических отвердителей в жидкостекольных хромитовых смесях позволило существенно улучшить выбиваемость за счет сокращения содержания ЖС и изменения структуры связующей композиции после охлаждения. В то же время использование в хромитовых смесях с 7...10 масс. ч. ЖС добавок (глин, бокситов и др.), обеспечивающих улучшение выбиваемости путем повышения температуры плавления связующей композиции, приводило к ухудшению противопригарных свойств.
Выводы
Анализ литературных источников показал ,что для улучшения выбиваемости жидкостекольных смесей из отливок применяют следующие методы:
1)Введение в смесь неорганических добавок(глины,боксита,мела и др.).
Действие неорганических добавок на условия выбивки смесей с жидким стеклом принципиально одинаково. Оно основано на том, что в процессе нагрева вводимое вещество реагирует с составляющими жидкого стекла NaO и SiO, образуя соответствующее тройное соединение. Температура плавления тройного соединения соответствует температуре второго максимума работы, затрачиваемой на выбивку стержней.
2)Введение органических добавок(древесного пека,битума ,графита и др.).
При низких температурах прогрева стержней до 400º C введение органических добавок может содействовать прорыву пленок и снижению работы, затрачиваемой на выбивку стержней. При высоких температурах, превышающих 800°C, в условиях недостатка кислорода может происходить неполное сгорание органических добавок, в результате чего между силикатной пленкой связующего вещества и зерном наполнителя образуется инертная прослойка сажистого углерода.
Известно, что инертные прослойки снижают адгезию пленок и уменьшают прочность смесей. Поэтому введение таких добавок может уменьшить абсолютное значение величины A, при температуре образования второго максимума или близких к ней.
3)Уменьшение содержания жидкого стекла.
Т.к жидкое стекло обладает исключительно высокой адгезией к кварцу, то протекает когезионный тип разрушения смеси. В результате прочность смеси будет непосредственно зависеть от количества введенного в нее связующего материала. Чем меньше жидкого стекла будет введено в смесь, тем легче окажется выбивка стержней из отливок.
Список использованной литературы
Список использованной литературы:
1. Берг П. П. Формовочные материалы. - М.: Машгиз ,1963.- 408с.
2.Борсук П.А.,Лясс А.М.Жидкие самотвердеющие смеси.-М.:Машиностроение,1979.- 255с.
3.Борсук П.А.Смеси с жидкими отвердителями.//Литейное производство.-1990.-№2.-c.15-17.
4.Винокуров В.В.,Иоговский В.А.,Мармонтов Е.А и др.Улучшение выбиваемости жидкостекольных смесей из отливок.//Литейное производство.-1966.-№2.-c.25-27.
5.Вишняков Х.И. Улучшение выбиваемости жидкостекольных смесей добавками доменного шлака.//Литейное производство.-1976.-№11.-c.42.
6.Грузман В.М.Улучшение выбиваемости жидкостекольных смесей.//Литейное производство.-1999.-№6.-c.30-31.
7.Дорошенко С.П.,Ващенко К.И.Наливная формовка:Монография.-Киев:Вища школа. Головное изд-во,1980.-176c.
8.Дорошенко С.П.,Макаревич А.П.Состояние и перспективы применения жидкостекольных смесей.//Литейное производство.-1990.-№2.-c.14-15.
9.Климкин А.В.Смеси улучшенной выбиваемости.//Литейное производство.-1990.-№2.-c.25.
10.Лясс А.М.Быстротвердеющие формовочные смеси .-.:Машиностроение,1965.-322c.
11.Лясс А.М.,Валисовский И.В.Пути улучшения выбиваемости смеси с жидким стеклом.//Труды ЦНИИТМАШ.-1960.-№6.-c.81-95.
12.Лясс А.М.,Валисовский И.В.Об улучшении выбиваемости смесей с жидким стеклом .//Литейное производство.-1961.-№9.-с.15-17.
13.Медведев Я.И.,Валисовский И.В.Технологические испытания формовочных материалов.-2-е издание ,перераб.и доп. -М.:Машиностроение,1973.-298c.
14.Ромашкин В.Н.,Валисовский И.В.Смеси с улучшенными технологическими свойствами.//Литейное производство.-1990.-№2.-c.17-18.
15.Рыжков И.В.,Толстой В.С.Физико-химические основы формирования свойств смесей с жидким стеклом.-Харьков:Вища школа,1975.-128c.
... смеси, состоящие из полевого шпата, кремнезема, каолина и жидкого стекла. Перейдем к экспериментальному рассмотрению условий образования пригара на стальных и чугунных отливках при использовании смесей с жидким стеклом.2.Методы качественной оценки пригара.2. КАЧЕСТВО ПОВЕРХНОСТИ ОТЛИВОК Шероховатость отличается от пригара тем, что 1) концентрация окислов на поверхности металла отливки ...
... состава для определенных видов литья, и они не выходят за пределы этого предприятия. Основным недостатком этого метода является усложнение технологии 3.9. Изготовление форм из высокоогнеупорных и химически инертных формовочных материалов для сокращения пригара. В литейном производстве при изготовлении разовых форм большое распространение получили песчано-глинистые смеси. Объясняется это ...
... - дальнейшее развитие, совершенствование и разработка новых технологических методов обработки заготовок деталей машин, применение новых конструкционных материалов и повышение качества обработки деталей машин. Наряду с обработкой резанием применяют методы обработки пластическим деформированием, с использованием химической, электрической, световой, лучевой и других видов энергии. Классификация ...
... осуществлять трудовую деятельность более эффективно, творчески, а также способствует выходу личности на новые уровни своего развития. 1.2 Педагогические подходы к реализации программы профессиональной подготовки заливщиков металла Учебные занятия, как правило, проводятся в виде лекций, консультаций, семинаров, практических занятий, лабораторных работ, контрольных и самостоятельных работ, ...
0 комментариев