1. определить резонансную частоту, резонансное сопротивление, характеристическое сопротивление, добротность и полосу пропускания контура.
Резонансная частота ω0 = 3,984·106 (вычисления произведены в MATCAD 5.0)
Резонансное сопротивление:
Характеристическое сопротивление ρ в Омах
Добротность контура
Резонансная частота цепи
ω0 = 3,984·106
Резонансное сопротивление цепи
Добротность цепи
Qцепи = 0,09
Полоса пропускания цепи
2.
3. Рассчитать и построить в функции круговой частоты активную составляющую полного сопротивления цепи:
4. Рассчитать и построить в функции круговой частоты реактивную составляющую полного сопротивления цепи:
5. Рассчитать и построить в функции круговой частоты АЧХ комплексного коэффициента передачи по току в индуктивности:
6.
Рассчитать и построить в функции круговой частоты ФЧХ комплексного
коэффициента передачи по току в индуктивности:
7. Рассчитать мгновенное значение напряжение на контуре:
Ucont = 229179·cos(ω0t + 90˚)
8. Рассчитать мгновенное значение полного тока на контуре:
Icont = 57,81cos(ω0t + 90˚)
9. Рассчитать мгновенное значение токов ветвей контура:
ILR = 646cos(ω0t + 5˚)
IC = 456,5cos(ω0t - 0,07˚)
Определить коэффициент включения Rn в индуктивную ветвь контура нагрузки с сопротивлением Rn = Ro, при котором полоса пропускания цепи увеличивается на 5%.
|
|
|
Данную схему заменяем на эквивалентную в которой параллельно включенное сопротивление Rn заменяется сопротивлением Rэ включенное последовательно:
Выполняя математические операции используя программу MATCAD 5.0 находим значение коэффициента включения KL :
Параметры цепи:
e(t) = 90sinωt = 90cos(ωt - π/2)
Q = 85
L = 3.02 · 10-3 Гн
С = 1,76 • 10-9 Ф
Рассчитать параметры и частотные характеристики двух одинаковых связанных колебательных контуров с трансформаторной связью, первый из которых подключен к источнику гармонического напряжения.
1. определить резонансную частоту и сопротивление потерь R связанных контуров:
2. Рассчитать и построить в функции круговой частоты АЧХ И ФЧХ нормированного тока вторичного контура при трех значениях коэффициента связи Ксв = 0.5Ккр (зеленая кривая на графике), Ксв = Ккр (красная кривая на графике), Ксв = 2Ккр (синяя кривая на графике), где Ккр – критический коэффициент связи.
ФЧХ нормированного тока вторичного контура при трех значениях коэффициента связи Ксв = 0.5Ккр (зеленая кривая на графике), Ксв = Ккр (красная кривая на графике), Ксв = 2Ккр (синяя кривая на графике), где Ккр – критический коэффициент связи.
Графически определить полосу пропускания связанных контуров при коэффициенте связи Ксв = 0,5Ккр
Графически определить полосу пропускания связанных контуров при коэффициенте связи Ксв = Ккр
Графически определить полосу пропускания связанных контуров при коэффициенте связи Ксв = 2Ккр, а так же частоты связи.
Рассчитать переходный процесс в электрической цепи при включении в нее источника напряжения e(t) амплитуда которого равна E = 37 и временной параметр Т = 0,46 мс, сопротивление цепи R = 0.9 кОм, постоянная времени τ = 0.69.
Определить индуктивность цепи, а так же ток и напряжение на элементах цепи
|
Так как данная цепь представляет собой последовательное соединение элементов, ток в сопротивлении и индуктивности будет одинаковым следовательно для выражения тока цепи имеем:
Исходное уравнение составленное для баланса напряжений имеет вид:
Заменяя тригонометрическую форму записи напряжения е(t) комплексной формой
Имеем:
Используя преобразования Лапласа заменяем уравнение оригинал его изображением имеем:
Откуда
Используя обратное преобразование Лапласа находим оригинал I(t):
Переходя от комплексной формы записи к тригонометрической имеем
Определяем напряжение на элементах цепи
Параметры четырехполюсника
С = 1.4 ·10-8Ф
L = 0.001 Гн
R = 3.286 Ом
ω = 1000 рад/с
Параметры А11 и А21 рассчитываются в режиме İ 2 = 0
Параметры А12 и А22 рассчитываются в режиме Ŭ 2 = 0
|
Исходная матрица А параметров четырехполюсника:
... к расчету. ¨ В оглавлении указываются названия разделов и номера страниц, соответствующие началам разделов. ¨ Во введении кратко рассматривается общенаучное значение теории электрических цепей (ТЭЦ) для изучения электромагнитных явлений и их практического приложения. Описываются связи ТЭЦ с соответствующими разделами математики и физики, а также с различными ...
... . 1.2. Если в данный момент времени , это означает, что направление тока в проводнике совпадает с направлением, указанным стрелкой, т. е. положительные заряды перемещаются в направлении стрелки. В теории электрических цепей допускается возможность однозначной, не зависящей от выбора пути, оценки электрических напряжений меду любыми двумя зажимами исследуемой электрической цепи. Это позволяет ...
... Мгновенное напряжение на проводимости G =10 Cм при заданном токе i=12sin(ωt+φ) равно: u=1,2sin(ωt + φ) 4. Электрические цепи при гармоническом воздействии в установившемся режиме Основные свойства линейных цепей: Принципа суперпозиции. Независимыми называют узлы, которые: отличаются одной ветвью. Независимыми называются контура, которые: отличаются одной ...
... цепи для передачи и преобразования электрической энергии и цепи для передачи и преобразования информации. Основные понятия и элементы линейных пассивных электрических цепей Электрический ток и напряжение - основные величины, характеризующие состояние электрических цепей. Электрический ток в проводнике есть упорядоченное перемещение электрических зарядов. Ток оценивают интенсивностью или ...
0 комментариев