13. Применение биполярных транзисторов в электронных схемах.
Данный радиомикрофон предназначен для озвучивания мероприятий, и т. д. Устройство работает в УКВ диапазоне на частоте 87,9 МГц, специально отведенной для радиомикрофонов, и его сигналы принимают на обычный радиовещательный приемник с диапазоном УКВ-2. Дальность действия радиомикрофона в пределах прямой видимости — более 200 м.
Схема и принцип действия. Схема радиомикрофона приведена на рис. 13-1. Передатчик собран на транзисторе VT4 по однокаскадной схеме. Такое решение для миниатюрного устройства, каким является радиомикрофон, оправдано, так как использование в передатчике отдельно задающего генератора и выходного каскада приводит к снижению его экономичности и возрастанию габаритов.
Как известно, частота LC-генератора, работающего в области 100 МГц, существенно зависит от напряжения питания.
Передатчик содержит два контура — контур L1C9C10C12C13VD2, Задающий частоту генератора, и выходной контур L3C15C16, связанный с антенной. Это повышает стабильность генерируемой частоты.
Задающий контур подключен к транзистору VT4 по схеме Клаппа. Влияние изменения параметров транзистора VT4 при изменении питающего напряжения на задающий контур введено к минимуму выбором малого коэффициента включения транзистора в контур (определяется емкостью конденсаторов СЮ, С12,
С13). Для повышения температурной стабильности частоты применены конденсаторы С9, СЮ, С12, С13 с малым ТКЕ, а коэффициент включения в задающий контур варикапа VD2 невелик из-за малой емкости конденсатора С9.
Выходной П-коктур позволяет согласовать антенну с выходом транзистора
VT4 и улучшает фильтрацию высших гармоник. Выходной контур настроен на частоту второй гармоники задающего контура. Это уменьшает влияние выходного контура на задающий контур через емкость перехода коллектор—база транзистора VT4, благодаря чему улучшается стабильность частоты передатчика. За счет всех этих мер уход частоты передатчика при изменении питающего напряжения от 5 до 10 В невелик и подстройки приемника в процессе работы не требуется.
Звуковой сигнал с электретного микрофона ВМ1 поступает на вход микрофонного усилителя, собранного на операционном усилителе (ОУ) DA2. Питание микрофон получает через резистор R1 и развязывающую цепь R5C2. Для снижения потребляемой мощности на месте DA2 использован микромощный ОУ К140УД12. Резистор R10 задает потребляемый ток ОУ около 0,2 мА. Большой мощности от микрофонного усилителя не требуется, потому что он нагружен на варикап, а мощность управления варикапом, представляющим собой обратносмещенный диод, крайне мала R7 и сопротивление участка сток—исток полевого транзистора VT1 образуют цепь отрицательной обратной связи, определяющей коэффициент усиления микрофонного усилителя. Канал полевого транзистора VT1 служит регулируемым сопротивлением в системе АРУ. При напряжении затвор—исток, близком к нулевому, сопротивление канала — около 1 кОм и коэффициент усиления микрофонного усилителя близок к 100. При возрастании напряжения до 0,5... 1 В сопротивление канала повышается до 100 кОм а коэффициент усиления микрофонного усилителя уменьшается до 1. Это обеспечивает почти неизменный уровень сигнала на выходе микрофонного усилителя при изменении уровня сигнала на его входе в широких пределах.
Конденсатор С4 создает спад АЧХ микрофонного усилителя в области высоких частот для уменьшения глубины модуляции на этих частотах и предотвращения расширения спектра сигнала передатчика. Конденсатор СЗ блокирует цепь обратной связи усилителя DA2 по постоянному току. Через резистор R4 на неинвертирующий вход ОУ DA2 поступает напряжение смещения, необходимое при однополярном питании.
Транзистор VT3 выполняет функцию детектора системы АРУ и управляет полевым транзистором VT1. Порог срабатывания системы АРУ устанавливается подстроенным резистором R12. Когда сигнал с выхода микрофонного усилителя и отпирающее напряжение смещения с части резистора R12 в сумме сравняются с напряжением открывания перехода эмиттер—база транзистора VT3, последний открывается, подавая напряжение на затвор полевого транзистора VT1. Сопротивление канала полевого транзистора VT1 увеличивается, и коэффициент усиления микрофонного усилителя уменьшается.
Благодаря АРУ амплитуда сигнала на выходе усилителя поддерживается практически на постоянном уровне. Этот уровень можно регулировать, меняя резистором R12 напряжение смещения транзистора VT3. Цепь R9C5 задает постоянную времени срабатывания, а цепь R8C5 — постоянную времени восстановления системы АРУ. Для компенсации температурных изменений напряжения открывания перехода эмиттер -база транзистора VT3 напряжение на резистор R12 подано с диода VD1,
Транзистор VT3, цепь формирования порога срабатывания АРУ R11R12VD1 и резистор R4, через который поступает смещение на неинвертирующий вход ОУ, получают питание от стабилизатора напряжения DA1. Это же напряжение подано через резистор R14 в качестве наприжения смещения на варикап VD2. Так как емкость варикапа существенно зависит от приложенного к нему напряжения смещения, то к его стабильности предъявляются жесткие требования. Поэтому стабилизатором DA1 служит микросхема КР142ЕН19, представляющая собой стабилизатор напряжения параллельного типа. Выбором резисторов R2 и R3 задают напряжение стабилизации около 3,5 В на выводе 3 микросхемы DA1. Балластным сопротивлением служит генератор тока на полевом транзисторе VT2. что повышает экономичность стабилизатора.
Рис 13-1 Электрическая принципиальная схема радио микрофона. |
51
14. Литература
1. И.П. Жеребцов «Основы Электроники», Ленинград «Энергатомиздат» 1985 г.
2. В.Г. Гусев, Ю.М. Гусев «Электроника», Москва «Высшая школа» 1991 г.
3. В.В. Пасынков, Л.К. Чирикин «Полупроводниковые приборы», Москва «Высшая школа» 1987 г.
4. В.А. Батушев «Электронные приборы», Москва «Высшая школа» 1980 г.
5. Морозова И.Г. «Физика электронных приборов», Москва «Атомиздат» 1980 г.
6. Полупроводниковые приборы. Транзисторы. Справочник/ под ред. Н.Н. Горюнова, Москва «Энергатомиздат» 1985 г.
7. Журнал «Радио»
Web-литература
1. www.referat.ru
2. www.radiofanat.ru
3. www.radio.ru
52
Министерство Образования Республики Молдова
Технический Университет Молдовы
Факультет Радиоэлектроники и Телекоммуникаций
Кафедра Телекоммуникаций
Курсовая работа
по дисциплине Радиоэлектроника I
Тема: Анализ и моделирование биполярных транзисторов.
Выполнил: Студент группы TLC-034
Раецкий Николай
Проверил: Зав.кафедрой Телекомуникаций
Бежан Николай Петрович
Chişinău 2004
Содержание
Курсовой работы по дисциплине Радиоэлектроника I.
Тема: Анализ и моделирование биполярных транзисторов.
Задание.
Введение.
Технология изготовления биполярного транзистора КТ 380.
Анализ процессов в биполярном транзисторе.
Статические характеристики биполярного транзистора включенного по схеме с общим эмиттером, общей базой и общим коллектором.
Анализ эквивалентнах схем биполярного транзистора.
Н – параметры биполярного транзистора.
Работа биполярного транзистора на высоких частотах.
Работа биполярного транзистора в импульсном режиме.
Математическая модель биполярного транзистора.
Измерение параметров биполярного транзистора.
Основные параметры биполярного транзистора.
Применение биполярных транзисторов в электронных схемах(на примере радиомикрофона ).
Литература.
2
... САПРа затраты машинного времени на определение нелинейных функций, описывающих различные полупроводниковые приборы составляют значительную часть общих затрат времени. 1. Проблема математического моделирования биполярных транзисторов Под моделированием понимается описание электрических свойств полупроводникового устройства или группы таких устройств, связанных между собой, с помощью ...
... к модификации межэлектродных ёмкостей, а также режим работы транзистора – режимы большого или малого тока коллектора (проявление эффекта Кирка). Необходимо и достаточно параметры математической модели биполярных транзисторов описываются 8-ю характеристиками: Зависимостью напряжения на переходе эмиттер-база Uбэ в режиме насыщения от тока коллектора (желательно иметь диапазон изменения тока ...
... параметров модели транзистора, зависимости этих параметров от температуры и конструкции, рассмотрены методы экстракции параметров модели из экспериментальных характеристик. Анализ PSpice модели БТ показал, что наряду с достоинствами этой модели есть и существенные недостатки. В целом модель биполярного транзистора в PSpice может с высокой точностью и в широком диапазоне напряжений, токов и ...
... генератора тока базы в прямом (23) в инверсном (24) включениях; - проводимость GC – проводимость генератора тока коллектора в прямом и инверсных включениях (25) Шумовая модель биполярного транзистора При анализе частотных зависимостей передаточных характеристик в рамках анализа по переменному току линейных (усилительных) ИС может проводиться и анализ шумовых ...
0 комментариев