3.3 Апериодическое звено
|
Рисунок 3.3.1 - Схема апериодического звена
Параметры цепи
С=0.5мкФ, RC=T, R1=103R, T=3.5×10-5сек.
Найдём R и R1:
(3.3.1)
. (3.3.2)
Комплексный частотный коэффициент передачи цепи определяется по формуле (3.3.3), как отношение выходного комплексного сопротивления к входному
. (3.3.3)
Комплексный частотный коэффициент передачи апериодического звена
Найдем комплексный частотный коэффициент передачи апериодического звена:
(3.3.4)
Из формулы (3.3.4) найдём АЧХ:
(3.3.5)
Из формулы (3.3.5) найдём ФЧХ:
. (3.3.6)
Амплитудно-частотная и фазо-частотная характеристики апериодического звена показаны в приложении Б на рисунках Б.1 и Б.2 соответственно.
Операторный коэффициент передачи получаем из комплексного частотного коэффициента путём замены jw на р.
(3.3.7)
Импульсная характеристика h(t) это реакция цепи на дельта-импульс d(t). Удобнее всего искать ее в операторной форме.
Изображение d(t) в операторной форме имеет вид, приведённый в формуле (3.3.8).
|
Импульсную характеристику цепи найдём через обратное преобразование Лапласа, результат которого приведён в формуле (3.3.9).
(3.3.9)
Графическое изображение импульсной характеристики апериодического звена приведено в приложении Б на рисунке Б.3
Переходная характеристика g(t) представляет собой реакцию цепи на единичную ступеньку s(t). Изображение s(t) в операторной форме имеет вид:
|
Сигнал на выходе в операторной форме, когда на входе единичная ступенька s(t) имеет вид:
|
В итоге, переходная характеристика приведена в формуле (3.3.12).
|
Графическое изображение переходной характеристики апериодического звена приведено в приложении Б на рисунке Б.4
3.4 Колебательное звено.
Схема колебательного звена приведена на рисунке 3.4.1
Рисунок 3.4.1 – Схема электрическая принципиальная колебательного контура
Параметры цепи
L=1.5мкГн=1.5×10-6Гн, C=20000пФ=2×10-8Ф,
Q=50, R1=103R, fр=f0
Найдём R и R1. Для этого преобразуем параллельное соединение C и R1 в последовательное соединение Сэкв и Rэкв.
Допустим R1>>Rc, где R1 – сопротивление резистора R1, Rc – реактивное сопротивление конденсатора, тогда Сэкв»С.
Рисунок 3.4.2 – Эквивалентная схема колебательного звена
Резонансная частота последовательного колебательного контура определяется формулой:
. (3.4.1)
. (3.4.2)
Характеристическое сопротивление контура – сопротивление каждого из реактивных элементов при резонансе:
. (3.4.3)
. (3.4.4)
Переходя к эквивалентной схеме определяют Rэкв по формуле:
. (3.4.5)
Rпос=R+Rэк . (3.4.6)
Подставив все значения в формулу (3.4.4):
Ом. (3.4.7)
Подставляем (3.4.5) в (3.4.4) и учитывая, что R1=103×R, получаем:
, (3.4.8)
. (3.4.9)
R=0.087Ом. Следовательно, R1=870 Ом.
870 Ом >> 8.66 Ом (3.4.10)
Комплексный частотный коэффициент передачи цепи определяется по аналогии с апериодическим звеном по формуле (3.3.3).
(3.4.11)
коэффициент передачи колебательного звена.
(5.8)
Для АЧХ имеем:
. (5.9)
Для ФЧХ имеем:
. (5.10)
Амплитудно-частотная и фазо-частотная характеристики колебательного звена показаны на рисунках в приложении В на рисунках В.1 и В.2
Операторный коэффициент передачи получаем путём замены iw на р по аналогии с апериодическим звеном.
Передаточная функция колебательного звена имеет вид:
, (5.18)
где
, (5.19)
. (5.20)
Импульсная характеристика колебательного звена определяется преобразованием Лапласа от операторной передаточной функции.
(5.21)
Графические изображения импульсной и переходной характеристик колебательного звена приведены в приложении В на рисунках В.3 и В.4
... тем шире спектр и наоборот. 2) Огибающая спектра периодического сигнала имеет форму спектральной плотности одиночного сигнала. 3) Спектр амплитудно-модулированного радиосигнала представляет собой фактически спектр модулирующего видеосигнала, смещенный по оси частот на (f0)ω0. 4) Спектр дискретного сигнала представляет собой сумму спектров видеосигнала смещенных друг относительно друга на ...
... . 1.2. Если в данный момент времени , это означает, что направление тока в проводнике совпадает с направлением, указанным стрелкой, т. е. положительные заряды перемещаются в направлении стрелки. В теории электрических цепей допускается возможность однозначной, не зависящей от выбора пути, оценки электрических напряжений меду любыми двумя зажимами исследуемой электрической цепи. Это позволяет ...
... В данной работе решаются задачи машинного анализа электрических цепей. В курсовом проекте необходимо для заданной электрической цепи по известному входному сигналу UВХ(t) построить выходной сигнал UВЫХ(t) , а затем определить некоторые его характеристики W. Характеристика W вычисляется с погрешностью не более 0.1. Погрешность вычисления величины W зависит от количества расчетных точек N, для ...
... цепи для передачи и преобразования электрической энергии и цепи для передачи и преобразования информации. Основные понятия и элементы линейных пассивных электрических цепей Электрический ток и напряжение - основные величины, характеризующие состояние электрических цепей. Электрический ток в проводнике есть упорядоченное перемещение электрических зарядов. Ток оценивают интенсивностью или ...
0 комментариев