3.1.9. Точность определения координат по азимуту Gan.

Систематические ошибки при измерении азимута могут возникнуть при неточном ориентировании антенной системы РЛС и вследствие несоответствия между положением антенны и масштабной электрической шкалой азимута.

Случайные ошибки измерения азимута цели обуславливаются нестабильностью работы системы вращения антенны, нестабильностью схем формирования отметок азимута, а также ошибками считывания.

Потенциальная ошибка измерения азимута определяется выражением: (9)

0.285

3.1.10. Вероятность правильного обнаружения D:

Вероятность правильного обнаружения – вероятность принятия решения о наличии цели при условии, что цель действительно есть.

Вероятность правильного обнаружения задана в техническом задании и равна D = 0,5.

 

3.1.11. Вероятность ложной тревоги F.

Вероятность ложной тревоги – вероятность принятия решения о наличии цели при ее отсутствии.

Вероятность ложной тревоги задана в техническом задании и равна F = 10-9.

3.2. Обоснование, выбор и расчет технических характеристик РЛС 3.2.1. Режим работы РЛС.

Проектируемая радиолокационная станция работает в импульсном режиме. Сигнал – некогерентные прямоугольные импульсы.

3.2.2. Рабочая длина волны l.

Диапазон волн, применяемый в радиолокационной технике, лежит в области метровых, дециметровых, сантиметровых и миллиметровых волн. От длины волны РЛС зависят размеры антенной системы при требуемых значениях диаграммы направленности и коэффициента направленного действия антенны. Применение более коротких волн при тех же размерах антенны позволяет улучшить разрешающую способность и точность отсчета угловых координат. При выборе длины волны необходимо учитывать поглощающие и рассеивающие действия гидрометеоров и атмосферы, возможность получения необходимой мощности от передатчика и обеспечения требуемой чувствительности приемника.

В диапазонах сантиметровых и особенно миллиметровых волн интенсивное поглощение электромагнитных колебаний вызывает нежелательное уменьшение дальности действия станции. Кроме того, гидрометеоры в этих диапазонах могут являться источником интенсивного отражения, затрудняющего и полностью исключающего наблюдение целей.

Выбор длины волны должен производиться с учетом особенностей РЛС и влияния длины волны на ее тактические характеристики.

Так, например, РЛС дальнего обнаружения, от которой не требуется очень высокой разрешающей способности и большой точности измерения угловых координат, может работать в диапазоне дециметровых или даже метровых волн.

Наоборот, для РЛС ближнего действия, как правило, важны высокая точность отсчета угловых координат и разрешающая способность. В таких случаях выгодно использовать сантиметровые, а иногда и миллиметровые волны, поскольку при общем небольшом радиусе действия станции затухание электромагнитных волн в атмосфере будет сказываться еще не слишком сильно.

Принимая во внимание все вышесказанное, выберем рабочую длину волны l=0.03 м.

3.2.3. Частота повторения зондирующих импульсов Fn.

Для однозначного определения целей на заданных расстояниях максимальная частота повторения Fn зондирующих импульсов должна удовлетворять условию:

(10)

где:

Кз=1,2 – коэффициент запаса.

277.778×Гц

3.2.4. Длительность зондирующего импульса tu.

Основным соображением по выбору длительности импульса является обеспечение заданной разрешающей способности по дальности. От длительности импульса также зависит минимальная дальность действия Rmin. Уменьшение длительности импульсов приводит к уменьшению эффективной площади от распределенных объектов.

Длительность зондирующего импульса задана в условии и равна: tu = 1,7Ч10-6 c.

3.2.5. Форма и ширина диаграммы направленности.

При выборе формы диаграммы направленности необходимо учитывать следующие требования:

¨     наиболее целесообразное использование мощности излучения (пример косекансной диаграммы направленности);

¨     обеспечение требуемой разрешающей способности по угловым координатам и точности их определения;

¨     обзор установленного сектора пространства или участка поверхности в заданное время должен производиться без пропуска в приеме отраженных сигналов.

Таким образом, требования оказываются в достаточной мере противоречивыми. Поэтому часто приходится искать компромиссное решение.

Для удобства обычно рассматривают отдельно диаграмму направленности в горизонтальной плоскости и диаграмму направленности в вертикальной плоскости. При этом обращают внимание на ширину диаграммы направленности q.

Ширина диаграммы направленности антенны влияет на дальность радиолокационного наблюдения. По мере сужения диаграммы направленности антенны увеличивается ее коэффициент направленного действия и соответственно возрастает максимальная дальность действия РЛС.

Точность измерения угловых координат также зависит от ширины диаграммы направленности в плоскости пеленгования. С ростом ширины диаграммы ошибка увеличивается. При выборе величины q необходимо учитывать требования в отношении разрешающей способности по направлению Da. Чем шире диаграмма направленности, тем труднее наблюдать цели, находящиеся на близком расстоянии.

Принятая в РЛС диаграмма направленности зависит от метода обзора пространства и способа измерения координат. В плоскости измерения угловых координат целей диаграмму направленности делают возможно более узкой.

Ширина диаграммы направленности в горизонтальной плоскости равна:

q = 3°, в вертикальной плоскости косекансквадратная диаграмма направленности j=35°.

q0,5=q/1.5=20

3.2.6. Необходимый диаметр антенны

Принимаем dА=0.76м , и уточняем ширину луча.

рад

3.2.7. КНД и усиления антенны, эффективная площадь антенны.

КНД - коэффициент направленного действия антенны.

=5490

=5215

=0,448 м2

GA – коэффициент усиления антенны;

SА – эффективная площадь антенны;

η – КПД антенны.

3.2.8. Скорость вращения антенны Ωа..

Скорость вращения антенны выбирают с учетом требований в отношении сокращения времени обзора и надежности наблюдения сигналов.

При заданных значениях ширины диаграммы направленности q, частоты следования импульсов Fn и сектора обзора Daобз скорость вращения антенны определяется выражением:

(11)

0.417×c-1

(12)

40 град × c-1

3.2.9. Количество импульсов в пакете Nu.

Количество импульсов в пакете зависит от ширины диаграммы направленности в горизонтальной плоскости q, скорости вращения антенны W и частоты следования зондирующих импульсов Fn:

(13)

20

3.2.10. Чувствительность приемника Pnmin.

Приемное устройство осуществляет обнаружение сигналов. Обнаружение сигналов при оптимальной фильтрации обычно сводится к следующим операциям:

¨       оптимальная фильтрация каждого импульса пакета;

¨       амплитудное детектирование;

¨       синхронное интегрирование видеосигналов;

¨       испытание суммарного сигнала на порог.

Первые две операции обычно выполняет приемное устройство, а остальные – выходное. Применение оптимальной обработки сигналов приводит к уменьшению пороговой мощности. Под пороговой мощностью радиолокационных сигналов понимают минимальную мощность сигнала на его входе, при которой обеспечивается прием и обнаружение отраженных сигналов с заданными вероятностями правильного обнаружения и ложной тревоги.

Величина пороговой мощности радиолокационных сигналов зависит от заданных значений вероятностей правильного обнаружения D и ложной тревоги F, параметров радиолокационных сигналов, времени наблюдения и вида обработки радиолокационных сигналов.

Пороговая мощность является реальной чувствительностью приемника. Она определяется выражением:

(14)

где:

k – постоянная Больцмана, k = 1.380662Ч10-23JЧK-1;

Т – абсолютная температура, Т = 300К;

Df – полоса пропускания приемника;

Nш – коэффициент шума приемника;

mp – коэффициент различимости.

Полоса пропускания приемника определяется по формуле:

где:

а – коэффициент, учитывающий степень искажения сигнала, проходящего через приемник, а = 1.37

8.059×105 × Гц

Коэффициент шума приемника задан в условии и равен Nш = 10 dB.

Коэффициент различимости определяется из выражения:

1,297

Чувствительность приемника равна:

4,327×10-14 ×Вт

или в dB/мВТ


Информация о работе «Выбор и обоснование тактико-технических характеристик РЛС. Разработка структурной схемы»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 45419
Количество таблиц: 3
Количество изображений: 0

Похожие работы

Скачать
36174
1
13

... коррелированной помехе ôr/ô2è1, Кп è, подавление помехи максимально. Рисунок 22. Структурная схема квадратурного компенсатора. Анализ эффективности применения комплекса помех и средств помехозащиты Следует, заметить, что никакое устройство для подавления помех не является универсальным. Каждое устройство защиты позволяет эффективно бороться только с каким-то одним ...

Скачать
29373
18
1

... параметры обнаружения. Поскольку принимаемая пачка из N импульсов является когерентной, то . 2. Расчет параметров помехопостановщика   2.1 Расчет мощности передатчика заградительной и прицельной помех помеха помехозащита радиолокационная станция Можно выделить несколько основных типов передатчиков заградительных помех: прямошумовые передатчики; передатчики помех, использующие мощный ...

Скачать
75759
0
0

... техническому совершенству, боевым и эксплуатационным качествам не уступали лучшим зарубежным образцам, а нередко и превосходили их. Большинство из созданных в эти годы образцов в большей или меньшей степени представляли собой высокоточное оружие. В них использовались высокоточные инерциальные системы, системы коррекции и телеуправления движением на траектории и системы самонаведения на конечном ...

Скачать
19824
1
2

... (количество предъявляемых к госиспытаниям образцов, перечень техдокументации, предъявляемой по окончании работ, порядок испытания и приёмки образцов). Техническое предложение – совокупность конструкторских документов, содержащих техническое и технико-экономическое обоснование целесообразности разработки изделия на основании анализа технического задания заказчика и различных вариантов возможной ...

0 комментариев


Наверх