Московский ордена Ленина, ордена Октябрьской Революции
и ордена Трудового Красного Знамени
государственный технический университет им. Н. Э. Баумана
Курсовой проект
по курсу “Конструирование ЭВС”
студент: Вилинский Д. группа ИУ4-92
консультант: Шахнов В. А.
Москва 1997
ОГЛАВЛЕНИЕ
Техническое задание......................................................................... Подбор элементной базы.................................................................. Расчет теплового режима блока....................................................... Расчет массы блока.......................................................................... Расчет собственной частоты ПП...................................................... Расчет схемы амортизации.............................................................. Расчет надежности по внезапным отказам...................................... Литература........................................................................................ | 3 4 5 13 13 14 16 18 |
ТЕХНИЧЕСКОЕ ЗАДАНИЕ
1. Назначение аппаратуры.
Данный блок относится к классу бортовой аппаратуры и предназначен для установки в управляемый снаряд. Функционально блок предназначен для свертки сигнала принимаемого бортовой РЛС.
2. Технические требования:
а) условия эксплуатации:
- температура среды tо=30 оC;
- давление p = 1.33 Ч 104 Па;
б) механические нагрузки:
- перегрузки в заданном диапазоне
f, Гц | 10 | 30 | 50 | 100 | 500 | 1000 |
g | 5 | 8 | 12 | 20 | 25 | 30 |
- удары u = 50 g;
в) требования по надежности:
- вероятность безотказной работы P(0.033) і 0.8.
3. Конструкционные требования:
а) элементная база - микросхемы серии К176 с КМДП логикой;
б) мощность в блоке P Ј 27 Вт;
в) масса блока m Ј 50 кг;
г) тип корпуса - корпус по ГОСТ 17045-71;
д) тип амортизатора АД -15;
е) условия охлаждения - естественная конвекция.
ПОДБОР ЭЛЕМЕНТНОЙ БАЗЫ
Поскольку проектируемый электронно-вычислительный блок является бортовой аппаратурой, то к нему предъявляются следующие требования:
высокая надежность;
высокая помехозащищенность;
малая потребляемая мощность;
Наиболее полно этим требованиям удовлетворяют интегральные микросхемы на дополняющих МДП (МОП) структурах - КМДП структуры.
Цифровые интегральные схемы на КМДП-транзисторах - наиболее перспективные. Мощность потребления в статическом режиме ЦИС составляет десятки нановатт, быстродействие - более 10 МГц. Среди ЦИС на МДП-транзисторах ЦИС на КМДП-транзисторах обладают наибольшей помехоустойчивостью: 40...45 % от напряжения источника питания. Отличительная особенность ЦИС на КМДП-транзисторах - также высокая эффективность использования источника питания: перепад выходного напряжения элемента почти равен напряжению источника питания. Такие ЦИС не чувствительны к изменениям напряжения питания. В элементах на КМДП-транзисторах полярности и уровни входных и выходных напряжений совпадают, что позволяет использовать непосредственные связи между элементами. Кроме того, в статическом режиме их потребляемая мощность практически равна нулю.
Таким образом была выбрана серия микросхем К176 (тип логики: дополняющие МОП-структуры). Конкретно были выбраны две микросхемы:
К176ЛЕ5 - четыре элемента 2ИЛИ-НЕ;
К176ЛА7 - четыре элемента 2И-НЕ.
Параметр | К176ЛЕ5 | К176ЛА7 |
Входной ток в состоянии “0”, Iвх0, мкА, не менее | -0.1 | -0.1 |
Входной ток в состоянии “1”, Iвх1, мкА, не более | 0.1 | 0.1 |
Выходное напряжение “0”, Uвых0, В, не более | 0.3 | 0.3 |
Выходное напряжение “1”, Uвых1, В, не менее | 8.2 | 8.2 |
Ток потребления в состоянии “0”, Iпот0, мкА, не более | 0.3 | 0.3 |
Ток потребления в состоянии “1”, Iпот1, мкА, не более | 0.3 | 0.3 |
Время задержки распространения сигнала при включении tзд р1,0, нс, не более | 200 | 200 |
Время задержки распространения сигнала при включении tзд р0,1, нс, не более | 200 | 200 |
Предельно допустимые электрические режимы эксплуатации
Напряжение источника питания, В | 5 - 10 В |
Нагрузочная способность на логическую микросхему, не более | 50 |
Выходной ток Iвых0 и Iвых1, мА, не более | 0.5 |
Помехоустойчивость, В | 0.9 |
РАСЧЕТ ТЕПЛОВОГО РЕЖИМА БЛОКА
Исходные данные:
Размеры блока: | L1=250 мм L2=180 мм L3=90 мм |
Размеры нагретой зоны: | a1=234 мм a2=170 мм a3=80 мм |
Зазоры между нагретой зоной и корпусом | hн=hв=5 мм |
Площадь перфорационных отверстий | Sп=0 мм2 |
Мощность одной ИС | Pис=0,001 Вт |
Температура окружающей среды | tо=30 оC |
Тип корпуса | Дюраль |
Давление воздуха | p = 1.33 Ч 104 Па |
Материал ПП | Стеклотекстолит |
Толщина ПП | hпп = 2 мм |
Размеры ИС | с1 = 19.5 мм с2 = 6 мм c3 = 4 мм |
Этап 1. Определение температуры корпуса
1. Рассчитываем удельную поверхностную мощность корпуса блока qк:
где P0 - мощность рассеиваемая блоком в виде теплоты;
Sк - площадь внешней поверхности блока.
Для осуществления реального расчета примем P0=20 Вт, тогда
2. По графику из [1] задаемся перегревом корпуса в первом приближении Dtк= 10 оС.
3. Определяем коэффициент лучеиспускания для верхней aл.в, боковой aл.б и нижней aл.н поверхностей корпуса:
Так как e для всех поверхностей одинакова и равна e=0.39 то:
4. Для определяющей температуры tm = t0 + 0.5 Dtk = 30 + 0.5 10 =35 oC рассчитываем число Грасгофа Gr для каждой поверхности корпуса
где Lопр i - определяющий размер i-ой поверхности корпуса;
g - ускорение свободного падения;
gm - кинетическая вязкость газа, для воздуха определяется из таблицы 4.10 [1] и равна gm=16.48 Ч 10-6 м2/с
5. Определяем число Прандталя Pr из таблицы 4.10 [1] для определяющей температуры tm, Pr = 0.7.
6. Находим режим движения газа, обтекающих каждую поверхность корпуса:
5 Ч 106< Grн Pr = Grв Pr = 1.831 Ч0.7 Ч 107 = 1.282 Ч 107 < 2 Ч 107 следовательно режим ламинарный
Grб Pr = 6.832 Ч0.7 Ч 106 = 4.782 Ч 106 < 5 Ч 106 следовательно режим переходный к ламинарному.
7. Рассчитываем коэффициент теплообмена конвекцией для каждой поверхности блока ak.i:
где lm - теплопроводность газа, для воздуха lm определяем из таблицы 4.10 [1] lm = 0.0272 Вт/(м К);
Ni - коэффициент учитывающий ориентацию поверхности корпуса: Ni = 0.7 для нижней поверхности, Ni = 1 для боковой поверхности, Ni = 1.3 для верхней поверхности.
8. Определяем тепловую проводимость между поверхностью корпуса и окружающей средой sк:
9. Рассчитываем перегрев корпуса блока РЭА во втором приближении Dtк.о:
где Кк.п - коэффициент зависящий от коэффициента корпуса блока. Так как блок является герметичным, следовательно Кк.п = 1;
Кн1 - коэффициент, учитывающий атмосферное давление окружающей среды берется из графика рис. 4.12 [1], Кн1 = 1.
... датчика, наличием нерассматриваемых источников тепла, особенностями конфигурации компонентов относительно потока воздуха от вентиляторов и др.). Это еще раз доказывает актуальность проведения экспериментальных исследований в изучении тепловых режимов устройств ЭВМ и, следовательно, создание для этих целей специализированного устройства (модуля). 7 РАЗРАБОТКА ТЕХНОЛОГИИ СБОРКИ МОДУЛЯ АЦП 7.1 ...
... источника меньше допустимого значения) и блок управления включает индикатор “Смените источник питания”. При восстановлении напряжения сети системы резервного электропитания опять переходит в режим нормальной работы. 2. Конструкторско-технологический раздел 2.1 Разработка печатной платы Печатные платы представляют собой диэлектрическую пластину с нанесенным на нее токопроводящим рисунком ( ...
... существенные случайные независимые отклонения при изготовлении штырей. Конструирование преобразователей фильтров на ПАВ. При конструировании фильтров на ПАВ необходимо решить ряд вопросов, связанных с вторичными эффектами, к числу которых в первую очередь следует отнести эффекты отражения акустических волн от штырей преобразователей, от краев звукопровода и т.д. Наиболее существенное влияние ...
... УЛПМ-901. 11 Визуальный контроль качества сборки при увеличении 2,5. ГГ6366У/012. Маршрутная карта на техпроцесс изготовления печатной платы приведена в приложении. 8 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ДИПЛОМНОГО ПРОЕКТА 8.1 Характеристика изделия «Модуль управления временными параметрами». Обоснование объема производства и расчетного периода Модуль управления временными параметрами – ...
0 комментариев