3.1.1.2. Выбор и обоснование компоновочных характеристик ячейки.
В данном случае под ячейкой понимается печатная плата с установленными на ней элементами. Способ установки ЭРЭ — односторонний. Конструкция ячеек — бескорпусная. Форму печатных плат выбираем прямоугольную, что облегчает определение их компоновочных характеристик. Компоновочные характеристики печатных плат — ориентировочное определение массогабаритных характеристик.
При размещении ЭРЭ-тов на печатных платах, ЭРЭ-ты заменяют установочными моделями. При определении площади печатных плат посадочное место ЭРЭ представляет собой проекцию установочной площади на плату. В сумме установочные площади определяют размеры печатных плат. При этом произведение сторон печатной платы должно соответствовать площади печатной платы.
3.1.1.3. Определение массо-габаритных размеров ячейки.
Определение установочной площади Sуст элементов. Установочная площадь каждого отдельно взятого элемента выбирается из приложения 1, из таблицы «Перечень элементов схемы и их характеристики»
Определение суммарной установочной площади элементов, расположенных на первой плате:
Sуст=1,3Sустi | (1.1) |
Sуст=1,3641,3 = 833,7 мм2 |
Определение суммарной установочной площади элементов, расположенных на второй плате:
Sуст=1,3Sустi | |
Sуст=1,31619 = 3243,5 мм2 |
Определение площадей печатных плат.
S n.n.= | (1.2) |
где Ks — коэффициент заполнения площади печатной платы, Ks=0,8
Первая плата:
Sn.n ==1042,1 мм2 |
Вторая плата:
Sn.n ==2023,7 мм2 |
Определение габаритных размеров печатных плат. Из нескольких вариантов соотношений сторон ПП выбрали платы с размерами 40х80.
Определение габаритных размеров ячеек. На горизонтально расположенной плате длина и ширина платы будут соответственно равны длине и ширине ячейки:В=40 мм, L=80 мм.
Высота ячеек равна:
Н=max Hэ+hn.n | (1.3) |
где max Hэ — высота самого высокого элемента на плате,
H –— толщина печатной платы.
Н=10,5+1,5=12 мм
Определение массы ячеек.
Масса каждой ячейки состоит из массы печатной платы и массы элементов, расположенных на ней. Масса каждого элемента mi представлена в приложении 1 в таблице 1.
mяч=mnn + mi | (1.4) |
где mnn=ρхV — масса печатной платы, кг
ρ — плотность материала платы, кг/м3
V — объем ячейки, м3
Первая ячейка:
mnn=2,4х1034б8х10-6=0,01152 кг
mяч=0,0135+0,01152=0,02502 кг
Вторая ячейка:
mnn=2,4х1034б8х10-6=0,01152 кг
mяч=0,02065+0,01152=0,03217 кг
Вывод: найдены массо-габаритные размеры ячеек.
3.1.1.4. Выбор способов крепления плат.
Горизонтально расположенную плату крепят на двух П-образных скобках с помощью 4 винтов и гаек, причем винты проходят через плату, скобки и основание. Скобки изготовлены из алюминия.
3.1.2. Анализ и уточнение варианта.
3.1.2.1. Определение компановочных характеристик корпуса велоодометра включает в себя 2 этапа: определение габаритных размеров корпуса блока, определение общей массы конструкции блока. Габаритные размеры корпуса блока определяются исходя из конструкторских соображений.
Определяем ориентировочный объем проектируемой конструкции:
V=Vустi | (1.5) |
где Кv – обобщенный коэффициент заполнения объема.
Vустi – установочный объем i-го элемента.
В качестве установочного объема i-го элемента выбираем объем ячейки. Тогда формула примет вид:
V=Vяч i | (1.6) |
Vячi = HiLiBi | (1.7) |
Vяч 1,2=408012=38400 мм3=38410-6м3
V = 38410-6=48010-6м3
Высота корпуса блока определяется по формуле:
H=Hяч +Х1+Х2 | (1.8) |
где Hяч — высота ячеек
Высота ячеек складывается из высоты каждой ячейки и зазора между ячейками — 1 мм.
Hяч=25 мм
Х1, Х2 – припуски размеров для обеспечения свободной входимости ячейки в блок.
Х1 =2,5 мм, Х2 =2,5 мм.
H=25+2,5+2,5=30 мм.
Ширина корпуса блока определяется по формуле:
B=Bяч+Y1+Y2 | (1.9) |
где Bяч — размер ячейки,
Bяч =50 мм
Y1,Y2 — припуски размеров для обеспечения свободной входимости ячейки в блок
Y1=5; мм
Y2=5 мм
B=40+5+5=50 мм.
Длина корпуса блока определяется по формуле:
L=Lяч+Z1+Z2 | (1.10) |
где Lяч — размер ячейки, Lяч=80 мм
Z1, Z2 — припуски размеров для обеспечения свободной входимости ячеек в блок,
Z1=Z2=5 мм
L=80+5+5=90 мм
Масса конструкции блока определяется по формуле:
m=mяч+mк+mосн+mдоп | (1.11) |
где mяч — масса ячеек, кг,
mк — масса корпуса блока, кг,
mосн — масса основания блока, кг,
mдоп — масса дополнительных элементов, кг.
m=0,0254∙2+0,102+0,015=0,162,8 кг.
Вывод: Определены габариты блока и масса.
... повторного выполнения проектных процедур. 2. Процесс проектирования реализуется путем моделирования различных физических процессов, протекающих в аппаратуре при ее функционировании. 2. Классификация проектных задач Рассмотрим классификацию проектных задач решаемых в процессе проектирования РЭС (рис. 2.). Рис. 2. Классификация проектных задач Задачи синтеза технических объектов ...
... к проектируемому изделию, объему, стадиям разработки и составу конструкторской документации. Анализ ТЗ должен выполнятся в соответствии с ГОСТ-15001-73. В данном курсовом проекте разрабатывается миниатюрный радиоприемник. Принципиальная схема приемника приведена в приложение. Приемник рассчитан на работу в диапазоне СВ. Прием ведется на магнитную антенну WA1. Ее колебательный контур ...
... Рис.6 3. Трассировка цепей питания и земли Трассировка – прокладка электрических трасс (проводов при проводном монтаже и печатных соединений при печатном монтаже), соответствующих принципиальной электрической схеме. 3.1 Краткое описание алгоритма Краскала В алгоритме Краскала кратчайшую связывающую сеть (КСС) строят путем последовательного присоединения к ним ребер, удовлетворяющих ...
... - Text Style (Текстовый стиль). В этом диалоговом окне установки такие же, как в программе Symbol Editor. 4 РАЗРАБОТАТЬ КОНТАКТНЫЕ ПЛОЩАДКИ Во всех системах автоматизированного проектирования печатных плат информация о графике контактных площадок содержится отдельно от графики корпуса компонента. Это связано с тем, что при изготовлении фотошаблона требуется обеспечить сопряжение программных ...
0 комментариев