Выбор материала и конструкции

12742
знака
3
таблицы
0
изображений

3.1. Выбор материала и конструкции

Для данного излучателя подойдет материал типа ЦТСНВ – 1, выбор его обусловлен, большим значением d31, данный параметр влияет на эффективность преобразователя.

Таблица 3.1 Значения постоянных пьезоэлектрического материала ЦТСНВ-1
Постоянная

EEю1*10-11,Па

SE11*10122

СЕ1,м/с

d31,1010

K31

Значение 0,62 16,3 2900 2200 2 0,34
Постоянная tg d, % n

QM

 

Значение 1,9 0,38 60

 

Материал для пассивного элемента выбираем из условия что он должен выдерживать большие нагрузки. Для этого подойдет титановый сплав.

Таблица 3.2

Значения постоянных пассивного материала ЦТСНВ-1

Постоянная

r, кг/м3

Сзв, м/с

ЕЮ, Па

n
Значение 4500 6000

1,1*10-11

0,35


Эскиз преобразователя

1 – пьезокерамическая пластина;

2 – пластина из титановоо сплава.

Данный преобразователь работает на изгибные колебания.

 


3.2      Расчет параметров преобразователя

 

Резонансная частота однородной пластины совершающей колебания изгиба определяется как:

3.1

где с – скорость звука в пластине, а – радиус пластины.

Отсюда можно рассчитать толщину пластины:

3.2

Так как пластина полуактивная, то ее толщина будет меньше, потому что скорость звука в титане больше скорости звука в ЦТСНВ-1.

Толщину титановой пластины возьмем tт=0.5*10-3м.

Тогда можно рассчитать резонансную частоту такой системы, приняв ее за многослойную.

1.     Определяем положение нейтрали Z0, в которой при изгибе механическое напряжение равно «0»:

3.3


где EE1, EЮ- модули упругости для ПК и титана соответственно.

2. Определяем приведенные коэффициенты Пуассона

3.4

nK, nT – коэффициенты Пуассона для ПК и титана.



3. Определяем приведенную приближенную жесткость

D=41.997 H*м

Площадь излучателя равна S=p×a2=3,14×(5×10-2)2=0,78×10-4 м2.

Определим массу составленной пластины M=p×a2×(rk×tk+rт×tт)=0.09 кг.

Определим резонансную частоту.

3.5

Резонансные частоты пластинчатых преобразователей зависят от геометрических соотношений и от упругих постоянных материалов биморфных элементов.

где a- коэффициент, зависящий от способа закрепления пластин*.

Наш излучатель по контуру закреплен с помощью резиновой полосы, тогда a=0,22.

, резонансная частота собранного преобразователя.

Видно что разброс составил 6176 Гц.


3.3. Расчет параметров ПЭ преобразователя

Расчет данных параметров производим исходя из рассчитанных геометрических расчетов выполненных до этого. Для выбора рассчетных формул необходимо знать отношение h/a (толщины пластины к радиусу).

h/a=(tk+tT)/a=0.293<0.3

При выполнении данного условия пластина называется тонкой и поэтому дальнейший расчет производится по следующим формулам:

Данные расчеты произведенны для нахождения эквивалентных параметров излучателя. Здесь Сэкв-эквивалентная гибкость, mэкв- эквивентная масса.**

 

3.3.1. Расчет энергетических характеристик преобразователя

Для этого необходимо задаться значением удельной мощности, которая для преобразователя такого типа примерно равна Wак.уд=40 Вт/м, тогда акустическая мощность определяется по формуле Wак= Wак.уд×S=40×4,53×10-3.


Рис. 5. Эквивалентная схема преобразователя

С0 - электрическая емкость преобразователя;

R – сопротивление электрических потерь;

n – коэффициент электромеханической трансформации;

СЭКВ – эквивалентная гибкость;

mЭКВ – эквивалентная масса;

rS – сопротивление излучателю;

rмп – сопротивление механических потерь.

С другой стороны ем. мощность будет равна:

где .

Для одноконтурной эквивалентной схемы составляем следующее уравнение:

3.6

где

Для преобразователей работающих на воздушную среду КПД h=0,3, тогда Uраб=9 В.

Чувствительность в режиме излучения равна:

3.6

где P-давление на оси излучения при r=1м.

K0=4×p×S/l2=41.

Чувствительность g0=1.284 Па/В.

Электро-механическое КПД

Электрическая мощность преобразователя:

Полное сопротивление преобразователя равно:

где RM=(rS+rмп)/hам×n=6,693 (кг/с),

тогда RW=6.688(Ом).

Добротность преобразователя вычисляется по формуле:***

3.7

По определению добротность равна также отношению частоты к диапазону ее изменения. Поэтому получается, что Df=f/Q=9157 Гц., т.е. данный преобразователь работает в широком диапазоне частот ±9157 Гц от заданной частоты. Данный результат позволяет использовать пр-ль в нашем устройстве.


4.   Конструкция преобразователя


Рис. 6. Конструкция преобразователя

1 – пьезокерамическая пластина из материала ЦТСНВ-1;

2 – корпус преобразователя;

3 – резиновое кольцо;

4 – титановая пластина.

Конструкция данного преобразователя обладает хорошими механическими качествами и проста в изготовлении. Пьезокерамическая пластина (1) из материала ЦТСНВ-1 склеивается с пластной из титанового сплава(5) эпоксидным клеем, и с пощью корпуса (2) закрепляется. Для лучшего прижима исполбзуется резиновое кольцо (3). Пластмассовый корпус состоит из двух соединяемых с помощью клея или болтов частей. Выбор данной форму корпуса обусловлен использованием его в качестве поглощаюшего экрана. Он позволяет получить широкую характеристику направленности.


Литература

1. Свердлин Г.М. Прикладная гидроакустика: Учеб. пособие. – 2-е изд., перераб. и доп. – Л.: Судостроение, 1990. – 320 с., ил.

2. Римский – Корсаков А. В. Электороакустика . М., “Связь”, 1973. 272 с. с ил.

3. Аронов Б.С. Электромеханические преобразователи из пьезоэлектрической керамики. – Л.: Энергоатомиздат. Ленинградское отд-ние, 1990. – 272 с: ил.

4. Справочник по гидроакустике / А.П. Евтютов, А.Е. Колесников, Е.А. Корепин и др. – 2-е изд., перераб. и доп. – Л.: Судостроение, 1988. – 522 с.: ил. – (Библиотека инженера-гидроакустика).


* Л1 стр. 282

* Л1 стр. 287

** Л1 стр.287-288

*** Л2 стр. 27


Информация о работе «Расчет преобразователя»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 12742
Количество таблиц: 3
Количество изображений: 0

Похожие работы

Скачать
25891
2
3

... с частотой, отличной от 400 Гц; 19) напряжение 220 В частотой 400 Гц; используется для: а) питания цепей управления преобразователей; б) питания цепей освещения и отопления; в) питания собственных нужд машиниста (электрочайник, электроплита, кондиционер, холодильник и т. д.). 3. Расчет вспомогательных цепей 3.1 Расчет вторичных ЭДС   Среднее значение выпрямленного напряжения Ud&# ...

Скачать
22434
0
8

... и полевые) и различные высокочастотные диоды, работающие на прямой ветви вольт-амперной характеристики, а ко второй — параметрические диоды. В последних используется вольт-фарадная характеристика. Преобразователи частоты на биполярных транзисторах могут выполняться на одном триоде, т. е. с совмещенным гетеродином, и на двух триодах, в которых один выполняет функции смесителя, а другой — ...

Скачать
29013
7
13

... частоты на IGBT транзисторах, для частотно-регулируемого энергосберегающего электропривода с асинхронным приводом. Нагрузкой асинхронного двигателя служит центробежный насос для перекачки жидкости. Глава 1. Расчет управляемого выпрямителя для электродвигателя постоянного тока тиристорного электропривода 1.1 Выбор рациональной схемы управляемого выпрямителя и силовая часть электропривода   ...

Скачать
35580
30
22

... Параметры обратного диода Максимально допустимый прямой импульсный ток Iи. пр. max= 60 А Максимально допустимое обратное импульсное напряжение Uи. обр= 400 В Максимальная частота f = 50 кГц 7. Расчет преобразователя При работе нереверсивного ШИП на якорь двигателя постоянного тока возможны два режима: непрерывных токов якоря и прерывистых токов якоря. Режим прерывистых токов якоря ...

0 комментариев


Наверх