3. Розрахунки інформаційних характеристик джерела повідомлень і первинних сигналів.
Повідомлення неперервного джерела перетворюється в первинний аналоговий сигнал b(t) за звичай без втрати інформації , тому розрахунки ін формаційних характеристик джерела будемо проводити для первинного сигналу.
1) Епсилон-ентропія розраховується за формулою:
(3.1)
h(B)-диференційна ентропія
- умовна ентропія.
Диференціальна ентропія залежить від виду розподілу імовірності P(b) та дисперсії сигналу . Так, як за умовою задано гаусів розподіл, то
біт/відлік (3.2)
Так як середнє значення первинного сигналу дорівнює нулю, то . Так як помилка відтворення на виході системи передачі є гаусовою, то умовну ентропію знайдемо за формулою :
(3.3)
де -дисперсія помилки відтворення.
Підставимо формули 3.3 та 3.2 в формулу 3.4, одержимо вираз для визначення епсилон-ентропії ,при цьому переведемо дБ в рази
(3.4).
Підставивши числові значення, одержимо :
біт/відлік
2) Коефіцієнт надлишку джерела обчислюється за формулою :
ǽ=, де - епсилон-ентропія джерела ;
- максимально можливе значення , що досягається за нормального розподілу імовірності сигналу b(t) та тій самій дисперсії сигналу .
,де раз
біт/відлік
З вище розрахованого отримуємо ǽ=
3) Продуктивність джерела , яку називають епсилон-продуктивністю, обчислюють за умови, що відліки беруться через інтервал Котельникова, по формулі :
,де - максимальна частота спектра первинного сигналу , кГц.
біт/с
біт/с.
Причини надлишковості джерела :
Під надлишковістю розуміють щось лишнє. Надлишковими в джерелі вважаються ті повідомлення, які переносять малу, а іноді і нульову кількість інформації. Час на їхню передачу затрачується, а інформації передається мало.
Присутність надлишковості означає, що частину повідомлень можна і не передавати по каналу зв’язку, а відновити на прийомі по відомим статистичним зв’язкам.
Основними причинами надлишковості являються :
1. Будь-які імовірності окремих повідомлень.
2. Присутність статистичних зв’язків між повідомленнями джерела.
Вимоги до пропускної можливості каналу зв’язку.
Найбільше значення швидкості R передачі інформації по каналу зв’язку при заданих обмеженнях називають пропускною можливістю каналу, яка вимірюється в [біт/с] :
Під заданими обмеженнями розуміють тип каналу (дискретний або неперервний ) , характеристики сигналів та завад . Пропускна можливість каналу зв’язку характеризує потенційні можливості передачі інформації. Вони описані в фундаментальній теоремі теорії інформації, відомій як основна теорема кодування К.Шенона. Для дискретного каналу вона формулюється слідуючим чином : якщо продуктивність джерела менше пропускної можливості каналу С ,тобто , то існує спосіб кодування (перетворення повідомлень в сигнал на вході ) та декодування ( перетворення сигналу в повідомлення на виході каналу ), при якому імовірність помилкового декодування дуже мала.
Пропускна можливість каналу, як граничне значення безпомилкової передачі інформації, являється одною з основних характеристик будь-якого каналу. Знаючи пропускну можливість каналу та інформаційні характеристики повідомлень (первинних сигналів) можна передавати по заданому каналу.
4. Розрахунок завадостійості демодулятора.
Імовірність помилки двійкового символу для ФМ-2 при оптимальному когерентному прийомі обчислюється за формулою :
, де
h- відношення енергії сигналу, що затрачується на передачу одного двійкового символу Ec до питомої потужності шуму N0.
;
.
Результати розрахунків імовірність помилки двійкового символу заносимо в таблицю 1.
Таблиця 1.
, дБ | , разах | Р |
2 | 1.585 | 0.0389 |
3 | 1.995 | 0.0235 |
4 | 2.512 | 0.0127 |
5 | 3.162 | 0.0059 |
6 | 3.981 | 0.0024 |
7 | 5.012 | 0.00076 |
8 | 6.309 | 0.00019 |
9 | 7.943 | 0.000034 |
10 | 10 | 0.0000039 |
Так як в каналі зв’язку не використовується завадостійке кодування, то припустима імовірність помилки символу на виході демодулятора дорівнює значенню , найденому при розрахунку параметрів ЦАП. Визначимо потрібне співвідношення сигнал-шум для системи передачі без кодування , при якому . Рдоп=
Рис.5 – Завадостійкість систем передачі без завадостійкого кодування та з ним.
З графіка визначаємо
Розрахуємо необхідне відношення сигнал-шум на вході демодулятора
0 комментариев