1.4.3. Методы оценивания коэффициентов отражения.

Рекурсивное решение уравнений Юла-Уалкера методом Левинсона связывает АР-параметры порядка p c параметрами порядка p-1 выражением :

, где n=1,2,..p-1

Коэффициент отражения определяется по известным значениям автокорреляционной функции :

, где

Из всех величин только  непосредственно зависит от автокорреляционной функции. В разное время предлагалось несколько различных процедур оценки коэффициента отражения, рассмотрим некоторые из них.

1.4.3.1. Геометрический алгоритм.

Ошибки линейного предсказания вперед и назад определяются соответственно следующими выражениями:

 

Рекурсивные выражения, связывающие ошибки линейного предсказания моделей порядков p и p-1, определяются простой подстановкой  и в рекурсивное соотношение для авторегрессионных параметров:

Несложно показать, что коэффициент отражения обладает следующим свойством (является коэффициентом частной корреляции между ошибками линейного предсказания вперед и назад) :

Используя оценки взаимной корреляции и автокорреляции ошибок предсказания вперед и назад, получим :

 

Таким образом, геометрический алгоритм использует алгоритм Левинсона, в котором вместо обычного коэффициента отражения, вычисляемого по известной автокорреляционной функции, используется его оценка

Окончательный вид выражений геометрического алгоритма :

, где n=1,2,..p-1

,  

, где

1.4.3.2. Гармонический алгоритм Берга.

Алгоритм Берга идентичен геометрическому, однако оценка коэффициента отражения находится из других соображений, а именно : при каждом значений параметра p в нем минимизируется арифметическое среднее мощности ошибок линейного предсказания вперед и назад (то есть выборочная дисперсия ошибки предсказания):

Приравнивая производные к нулю, имеем оценку для  :

Некоторым обобщением является взвешивание среднего квадрата ошибки предсказания для уменьшения частотного смещения, наблюдаемого при использовании базового метода Берга:

что приводит к следующей оценке :

1.4.4. Оценивание линейного предсказания по методу наименьших квадратов.

Налагая ограничения на авторегрессионные параметры, с тем чтобы они удовлетворяли рекурсивному выражению метода Левинсона, в методе Берга происходит минимизация по одного параметра - коэффициента отражения . Более общий подход состоит в минимизации одновременно по всем коэффициентам линейного предсказания.

Итак, пусть для оценивания авторегрессионных параметров порядка p используются последовательность данных .Оценка линейного предсказания вперед порядка p для отсчета будет иметь форму:

где  - коэффициенты линейного предсказания вперед порядка p.

Ошибка линейного предсказания :

В матричном виде это выражение записывается как :

и соотношение для ошибки :

Однако если рассматривать, в котором минимизируется следующая, невзвешенная выборочная дисперсия :

то матрица принимает теплицевый вид (далее ее будем обозначать ).

Нормальные уравнения, минимизирующие средний квадрат ошибки имеют следующий вид:

 

Элементы эрмитовой матрицы имеют вид корреляционных форм

, где

Таким образом, авторегрессионные параметры могут быть получены в результате решения нормальных уравнений. Рассмотрим алгоритм, который в решении нормальных уравнений учитывает тот факт, что эрмитова матрица  получена как произведение двух теплицевых и в результате этого сводит количество вычислений к  . При использовании алгоритма Холецкого потребовалось бы операций.

Ошибки линейного предсказания вперед и назад p-ого порядка

Здесь вектор данных , вектор коэффициентов линейного предсказания вперед  и вектор линейного предсказания назад определяется следующими выражениями:

 , ,

На основе отсчетов измеренных комплексных данных ковариационный метод линейного предсказания позволяет раздельно минимизировать суммы квадратов ошибок линейного предсказания вперед и назад:

,

что приводит к следующим нормальным уравнениям :

,

Введем необходимые для дальнейшего определения :

,

исходя из вида  и  можно записать :

, ,

где вектор столбцы  и даются выражениями :

,

Важными также являются следующие выражения :

Пара векторов-столбцов и  определяются из выражений :

Аналогично определяются вектора и , а также и  через матрицы  и .

Процедура, используемая для обновления порядка вектора линейного предсказания вперед выглядит следующим образом :

, где , в котором

Соответствующий вид имеет процедура обновления порядка для вектора предсказания назад:

, где ,

Векторы и должны удовлетворять следующим рекурсиям обновления порядка:

Используя тот факт, что  является эрмитовой матрицей имеем следующие выражения для  и :

 

Введем скалярные множители

 

Соответствующие рекуррентные выражения для  и имеют следующий вид :

Наконец, еще одна рекурсия обновления порядка необходима для вектора  :

 

Обновление временного индекса в векторе коэффициентов линейного предсказания вперед осуществляется в соответствии с выражением :

Выражение для обновления временного индекса у квадрата ошибки линейного предсказания вперед :

Аналогичным образом обновление временного индекса в векторе коэффициентов линейного предсказания назад ведется в соответствии с выражением :

Выражение для обновления временного индекса у квадрата ошибки линейного предсказания назад :

,

где комплексный скаляр удовлетворяет выражениям :

Соответствующие рекурсии по временному индексу для действительных скаляров  и  даются следующими выражениями:

,

Начальные условия необходимы для того, чтобы начать рекурсивное решение с порядка равного нулю:

, , ,

, ,

,

Экспериментальные результаты приведены в соответствующем разделе.

1.4.5. Градиентный адаптивный авторегрессионный метод

 

1.4.6. Рекурсивный авторегрессионный метод наименьших квадратов


1.5. Спектральное оценивание на основе моделей авторегрессии - скользящего среднего .

Модель авторегресии-скользящего среднего имеет больше степеней свободы, чем авторегрессионная модель, поэтому следует ожидать, что получаемые с ее помощью оценки спектральной плотности мощности будут обладать большими возможностями для передачи формы различных спектров. Основой спектрального оценивания при помощи модели авторегрессии-скользящего среднего является аппроксимация СС-процесса авторегрессионной моделью высокого порядка. Пусть

- системная функция СС(q)-процесса

-системная функция АР-процесса,

эквивалентного этому СС(q)-процессу, то есть

Применим обратное z-преобразование к обеим частям последнего равенства, используя теорему об обратном преобразовании произведения функций, получим:

причем

Таким образом, СС-параметры можно определить по параметрам некоторой эквивалентной авторегрессионной модели посредством решения произвольной подсистемы из q уравнений. Используя АР-оценки высокого порядка можно записать следующую систему уравнений :

В идеальном случае ошибка должна быть равна нулю при всех значениях m, за исключением m=0, однако на практике при использовании конечной записи данных эта ошибка не будет равна нулю, поэтому оценки для CC-параметров должны определятся посредством минимизации дисперсии квадрата ошибки:

 

Из структуры уравнения для оценок параметров скользящего среднего видно, что эти оценки можно найти, решив соответствующие нормальные уравнения (здесь используется либо «Оценивание корреляционной функции - метод Юла-Уалкера», либо

«Оценивание линейного предсказания по методу наименьших квадратов»)

Общая процедура раздельного оценивания авторегрессионных параметров и параметров скользящего среднего заключается в следующем. Этап первый - определение авторегрессионных параметров по исходным данным, после этого исходную последовательность данных необходимо подвергнуть фильтрации для получения временного ряда приближенно соответствующего некоторому СС-процессу (этап второй). Этот фильтр имеет системную функцию вида :

, где - оценки

авторегрессионных параметров, определенные с помощью метода наименьших квадратов. Системная функция процесса авторегресии-скользящего среднего равна , поэтому

 Таким образом, пропуская запись измеренных данных через фильтр с системной функцией , получаем на его выходе аппроксимирующий процесс скользящего среднего. Этап третий : для оценивания СС-параметров применяется процедура, описанная в начале этого раздела. Оценка спектральной плотности мощности АРСС-процесса имеет вид :

, где

- оценка автокорреляции, полученная по фильтрованной последовательности

Экспериментальные результаты приведены в соответствующем разделе.

.

 


Информация о работе «Спектральный анализ и его приложения к обработке сигналов в реальном времени»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 56254
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
64253
0
44

... частотного диапазона и внешний вид фильтра. То же самое мы видим и для других Частотных диапазонов на плакатах 2 и 3 . Доклад окончен Тема: Модель тракта прослушивания гидроакустических сигналов ОглавлениеВведение Место тракта прослушивания в структуре режима ШП типовой ГАС Формирование канала наблюдения в частотной области 3 Факторы, влияющие на восстановление сигнала 3.1 Перекрытие входных ...

Скачать
81779
1
27

... ідеальних напруг приймальних каналів U, які вільні від ефекту взаємного впливу, вирішується система:  , (27) де  - вектор реальних напруг приймальних каналів, отриманих після аналого-цифрового перетворювача (АЦП) без проведення корекції. З метою компенсації взаємного впливу, розв’язання системи (12) здійснюється за методом найменших квадратів з мінімізацією функц ...

Скачать
158991
11
10

... на другом или утверждения о реализации идеи человеко-машинного общения. Поэтому исследования в этой области являются весьма актуальными. 3. Разработка программного обеспечения для распознавания команд управления промышленным роботом 3.1 Реализация интерфейса записи и воспроизведения звукового сигнала в операционной системе Microsoft Windows 3.1.1 Основные сведения Звуковые данные хранятся ...

Скачать
62527
1
375

... Кибернетики и Информатики Работа допущена к защите Зав. кафедрой д.т.н., проф. Семушин И.В. _____________________ _____________________ Дипломная работа Адаптивное параметрическое оценивание квадратно-корневыми информационными алгоритмами. Специальность: 01.02 – Прикладная математика. Проект выполнил студент гр. ПМ-52 _______________ Кудрявцев М.Ю. Руководитель: зав. кафедрой МКИ ...

0 комментариев


Наверх