2.2 Расчёт оконечного каскада

2.2.1 Расчёт рабочей точки

Возьмём Uвых в 2 раза больше чем заданное, так как часть выходной мощности теряется на ООС.[2]

Uвых=2Uвых(заданного)=2 (В)

Расчитаем выходной ток:

Iвых===0,04 (А)

Расчитаем каскады с резистором и индуктивностью в цепи коллектора:


Расчёт резистивного каскада при условии Rн=Rк=50 (Ом) рис(2.2.1.1).


Рисунок 2.2.1.1- Резистивный каскад Рисунок 2.2.1.2- Нагрузочные прямые.

по переменному току.

Расчитаем выходной ток для каскада с резистором в цепи коллектора:

Iвых~===0,08 (А)

Расчитаем ток и напряжение в рабочей точке:

Uкэ0=Uвых+Uост, Uост примем равным 2В.  (2.2.1)

Iк0=Iвых~+0,1Iвых~  (2.2.2)

Uкэ0=3 (В)

Iк0=0,088 (А)

Расчитаем выходную мощность:

Pвых===0,04 (Вт)

Напряжение питания тогда будет:

Eп=Uкэ0+URк=Uкэ0+ Iк0×Rк=7,4 (В)

Найдём потребляемую и рассеиваемую мощность:

Pрасс=Uкэ0×Iк0=0,264 (Вт)

Рпотр= Eп×Iк0=0,651(Вт)


Для того чтобы больше мощности шло в нагрузку, в цепь коллектора включаем дроссель.[2]

Расчёт каскада при условии что в цепь коллектора включен Lк рис(2.2.1.3).

Рисунок 2.2.1.3- Индуктивный каскад Рисунок 2.2.1.4- Нагрузочные прямые.

по переменному току.

Расчитаем выходной ток для каскада с индуктивностью в цепи коллектора:

Iвых= ==0,04 (А)

По формулам (2.2.1) и (2.2.2) расчитаем рабочую точку.

Uкэ0=3 (В)

Iк0=0,044 (А)

Найдём напряжение питания, выходную, потребляемую и рассеиваемую мощность:

Pвых===0,04 (Вт)

Eп=Uкэ0=3 (В)

Рк расс=Uкэ0×Iк0=0,132 (Вт)

Рпотр= Eп×Iк0=0,132 (Вт)

Еп,(В) Ррасс,(Вт) Рпотр,(Вт) Iк0,(А)
С Rк 7,4 0,264 0,651 0,088
С Lк 3 0,132 0,132 0,044

Таблица 2.2.1.1- Характеристики вариантов схем коллекторной цепи

Из энергетического расчёта усилителя видно, что целесообразнее использовать каскад с индуктивностью в цепи коллектора.

Выбор транзистора осуществляется с учётом следующих предельных параметров:

1.          граничной частоты усиления транзистора по току в схеме с ОЭ

;

2.          предельно допустимого напряжения коллектор-эмиттер

;

3.            предельно допустимого тока коллектора

;

4.            предельной мощности, рассеиваемой на коллекторе

.

Этим требованиям полностью соответствует транзистор КТ996А. Его основные технические характеристики приведены ниже.

Электрические параметры:

1.            Граничная частота коэффициента передачи тока в схеме с ОЭ МГц;

2.            Постоянная времени цепи обратной связи пс;

3.            Статический коэффициент передачи тока в схеме с ОЭ ;

4.            Ёмкость коллекторного перехода при  В пФ;

5.            Индуктивность вывода базы нГн;

6.            Индуктивность вывода эмиттера нГн.

Предельные эксплуатационные данные:

1.            Постоянное напряжение коллектор-эмиттер В;

2.            Постоянный ток коллектора мА;

3. Постоянная рассеиваемая мощность коллектора  Вт;

2.2.2 Расчёт эквивалентных схем замещения транзистора.


2.2.2.1Расчёт параметров схемы Джиаколетто.

 Рисунок 2.2.2.1.1- Эквивалентная схема биполярного

транзистора (схема Джиаколетто).

Найдём параметры всех элементов схемы:[2]

Пересчитаем ёмкость коллектора из паспортной: Ск(треб)=Ск(пасп)*=1,6×=2,92 (пФ)

Найдём gб=, причём rб= :

rб= =2,875 (Ом); gб==0,347 (Cм);

Для нахождения rэ воспользуемся формулой rэ=, где Iк0 в мА:

 rэ= =1,043 (Ом);

Найдём оставшиеся элементы схемы

gбэ==0,017,где ß0=55 по справочнику;

Cэ==30,5 (пФ),где fТ=5000Мгц по справочнику;

Ri= =100 (Ом), gi=0.01(См),где Uкэ(доп)=20В Iко(доп)=200мА.

2.2.2.2Расчёт однонаправленной модели транзистора.


Данная модель применяется в области высоких частот.

Рисунок 2.2.2.2.1- Однонаправленная модель транзистора.

Параметры эквивалентной схемы расчитываются по приведённым ниже формулам.[2]

Входная индуктивность:

, (2.2.2.1)

где –индуктивности выводов базы и эмиттера.

Входное сопротивление:

, (2.2.2.2)

где , причём , и  – справочные данные.

Выходное сопротивление:

. (2.2.2.3)

Выходная ёмкость:

. (2.2.2.4)

В соответствие с этими формулами получаем следующие значения элементов эквивалентной схемы:

Lвх= Lб+Lэ=1+0,183=1,183 (нГн);

Rвх=rб=2,875 (Ом);

Rвых=Ri=100 (Ом);

Свых=Ск(треб)=2,92 (пФ);

fmax=fт=5 (ГГц)


Информация о работе «УСИЛИТЕЛЬ ПРИЁМНОГО БЛОКА ШИРОКОПОЛОСНОГО ЛОКАТОРА»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 17817
Количество таблиц: 5
Количество изображений: 0

Похожие работы

Скачать
17442
6
12

... 1.6 раза  (Ом); Rэ= (Ом); ; ; Общий уровень частотных искажений равен 3 дБ, то Yв для одного каскада примем равным: ; ; Подставляя все данные в (4.1.5) находим fв: Рисунок 4.1.1- Усилитель приёмного блока широкополосного локатора на четырёх каскадах. 4.2. Расчёт полосы пропускания входного каскада Все расчёты ведутся таким же образом, как и в пункте 4.1 с той лишь разницей что берутся ...

0 комментариев


Наверх