2.2.3 Расчёт и выбор схемы термостабилизации.

2.2.3.1 Эмитерная термостабилизация.


Эмитерная термостабилизация широко используется в маломощных каскадах, так как потери мощности в ней при этом не значительны и её простота исполнения вполне их компенсирует, а также она хорошо стабилизирует ток коллектора в широком диапазоне температур при напряжении на эмиттере более 3В.[1]

Рисунок 2.2.3.1.1- Каскад с эмитерной термостабилизацией.

Рассчитаем параметры элементов данной схемы.

Uэ=4 (В);

Eп=Uкэ0+Uэ=7 (В);

Rэ= ==90,91 (Ом);

Rб1=, Iд=10×Iб, Iб=, Iд=10× =10×=0,008 (А);

Rб1==264,1 (Ом);

Rб2= =534,1 (Ом).

Наряду с эмитерной термостабилизацией используются пассивная и активная коллекторная термостабилизации.[1]

2.2.3.2Пассивная коллекторная термостабилизация:

Ток базы определяется Rб. При увеличении тока коллектора напряжение в точке А падает и следовательно уменьшается ток базы, а это не даёт увеличиваться дальше току коллектора. Но чтобы стал изменяться ток базы, напряжение в точке А должно измениться на 10-20%, то есть Rк должно быть очень велико, что оправдывается только в маломощных каскадах[1].


Рисунок 2.2.3.2.1- Схема пассивной коллекторной термостабилизации

Rк==159.1(Ом);

URк=7 (В);

Eп=Uкэ0+URк=10 (В);

Iб==0.0008(А);

Rб= =2875 (Ом).

2.2.3.3 Активная коллекторная термостабилизация.

Можно сделать чтобы Rб зависило от напряжения в точке А см. рис.(2.2.3.2.1). Получим что при незначительном уменьшении (увеличении) тока коллектора значительно увеличится (уменьшится) ток базы. И вместо большого Rк можно поставить меньшее на котором бы падало порядка 1В см. рис.(2.2.3.3.1).[1]

b2=100;

Rк===22,73 (Ом);

Eп=Uкэ0+UR=4 (В);

Iд2=10×Iб2=10×=0.00008 (A);

R3==28,75 (кОм);

R1==21,25 (кОм);

R2==4.75 (кОм).


Рисунок 2.2.3.3.1- Активная коллекторная термостабилизация.

Данная схема требует значительное количество дополнительных элементов, в том числе и активных. Если Сф утратит свои свойства, то каскад самовозбудится и будет не усиливать, а генерировать.Основываясь на проведённом выше анализе схем термостабилизации выберем эмитерную.

3 Расчёт входного каскада по постоянному току

3.1 Выбор рабочей точки

При расчёте требуемого режима транзистора промежуточных и входного каскадов по постоянному току следует ориентироваться на соотношения, приведённые в пункте 2.2.1 с учётом того, что  заменяется на входное сопротивление последующего каскада. Но, при малосигнальном режиме, за основу можно брать типовой режим транзистора (обычно для маломощных ВЧ и СВЧ транзисторов  мА и В). Поэтому координаты рабочей точки выберем следующие мА, В. Мощность, рассеиваемая на коллекторе мВт.

3.2 Выбор транзистора

Выбор транзистора осуществляется в соответствии с требованиями, приведенными в пункте 2.2.1. Этим требованиям отвечает транзистор КТ3115А-2. Его основные технические характеристики приведены ниже.

Электрические параметры:

1.    граничная частота коэффициента передачи тока в схеме с ОЭ ГГц;

2.    Постоянная времени цепи обратной связи пс;

3.    Статический коэффициент передачи тока в схеме с ОЭ ;

4.    Ёмкость коллекторного перехода при В пФ;

5.    Индуктивность вывода базы нГн;

6.    Индуктивность вывода эмиттера нГн.

7.    Ёмкость эмиттерного перехода пФ;

Предельные эксплуатационные данные:

1.    Постоянное напряжение коллектор-эмиттер В;

2.    Постоянный ток коллектора мА;

3.    Постоянная рассеиваемая мощность коллектора  Вт;

3.3 Расчёт эквивалентной схемы транзистора

Эквивалентная схема имеет тот же вид, что и схема представленная на рисунке 2.2.2.2.1 Расчёт её элементов производится по формулам, приведённым в пункте  2.2.2.1

нГн;

пФ;

Ом

Ом;

Ом;

пФ.

3.3 Расчёт цепи термостабилизации

Для входного каскада также выбрана эмиттерная термостабилизация, схема которой приведена на рисунке 3.3.1.

Рисунок 3.3.1

Метод расчёта схемы идентичен приведённому в пункте  2.2.3.1 с той лишь особенностью что присутствует, как видно из рисунка, сопротивление в цепи коллектора . Эта схема термостабильна при В и  мА. Напряжение питания рассчитывается по формуле В.

Расчитывая элементы получим:

Ом;

кОм;

кОм;

4.1 Расчет полосы пропускания выходного каскада

Поскольку мы будем использовать комбинированные обратные [1], то все соответствующие элементы схемы будут одинаковы, т.е. по сути дела расчёт всего усилителя сводится к расчёту одного каскада.

Рисунок 2.3.1 - Схема каскада с комбинированной ООС

Достоинством схемы является то, что при условиях

 и (4.1.1)

схема оказывается согласованной по входу и выходу с КСВН не более 1,3 в диапазоне частот, где выполняется условие ³0,7. Поэтому практически отсутствует взаимное влияние каскадов друг на друга при их каскадировании [6].

При выполнении условия (1.53), коэффициент усиления каскада в области верхних частот описывается выражением:

, (4.1.2)

где ; (4.1.3)

;

.

Из (2.3.1), (2.3.3) не трудно получить, что при заданном значении

. (4.1.4)

При заданном значении ,  каскада равна:

, (4.1.5)

где .

Нагружающие ООС уменьшают максимальную амплитуду выходного сигнала  каскада, в котором они используются на величину

.

При выборе  и  из (4.1.3), ощущаемое сопротивление нагрузки транзистора каскада с комбинированной ООС равно .

Расчёт Kо:

Для реализации усилителя используем четыре каскада. В этом случае коэффициент усиления на один каскад будет составлять:

Ко==4.5дБ или 1.6 раза

 (Ом);

Rэ= (Ом);

;

;

Общий уровень частотных искажений равен 3 дБ, то Yв для одного каскада примем равным:

;

;


Подставляя все данные в (4.1.5) находим fв:


Рисунок 4.1.1- Усилитель приёмного блока широкополосного локатора на четырёх каскадах.


Информация о работе «УСИЛИТЕЛЬ ПРИЁМНОГО БЛОКА ШИРОКОПОЛОСНОГО ЛОКАТОРА»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 17817
Количество таблиц: 5
Количество изображений: 0

Похожие работы

Скачать
17442
6
12

... 1.6 раза  (Ом); Rэ= (Ом); ; ; Общий уровень частотных искажений равен 3 дБ, то Yв для одного каскада примем равным: ; ; Подставляя все данные в (4.1.5) находим fв: Рисунок 4.1.1- Усилитель приёмного блока широкополосного локатора на четырёх каскадах. 4.2. Расчёт полосы пропускания входного каскада Все расчёты ведутся таким же образом, как и в пункте 4.1 с той лишь разницей что берутся ...

0 комментариев


Наверх