2.3. Р а з р а б о т к а а л г о р и т м а и с т р у к т у р ы п р о г р а м м ы

Алгоритм программы представляется блок-схемой.

Укрупненная блок-схема алгоритма рассматриваемой задачи представлена на рис.4.

──────────

. НАЧАЛО .

────┬─────

────1────┴─────────────

/ ВВОД ИСХОДНЫХ ДАННЫХ /

────────────┬──────────

╓───── 2 ───┴───────────╖

║ ВЫБОР НАЧАЛЬНОЙ ║

║ ТЕМПЕРАТУРЫ ТЕЛА ║

╙───────────┬───────── ╜

╓───── 3 ───┴───────────╖

║ ОПРЕДЕЛЕНИЕ ЧИСЕЛ ║

║ Bi1 и Bi2 ║

╙───────────┬───────── ╜

╓───── 4 ───┴───────────╖

║ РЕШЕНИЕ СИСТЕМЫ ║

║ ЛИНЕЙНЫХ УРАВНЕНИЙ ║

╙───────────┬──────────╜

╓───── 5 ───┴───────────╖

║ ВЫВОД ЗНАЧЕНИЙ ║

║ ТЕМПЕРАТУР ║

╙───────────┬───────── ╜

────┴────

. КОНЕЦ .

─────────

Рис.4. Укрупненная схема алгоритма решения задачи

В блоке 1 ввод данных необходимо организовать в диалоговом режиме.

В качестве исходных данных вводится число узлов (N), размер ячейки сетки (dx), погрешность в определении температуры (eps) и граничные условия.

Пусть N=20; dx=0,1 м; eps=0,1оC; Ta = 120оC; Tb = 300оC;

Tc = 30оC; Td = 200оC; alfa1 = 40 Вт/(м"K);

alfa2 =120 Вт/(м"К); lamda = 50 Вт/(м"К ).

Наиболее простой вариант представления входной информации для данной программы будет иметь вид:

ВВЕДИТЕ ПАPАМЕТPЫ PАЗНОСТНОЙ СХЕМЫ:

число узлов - 20

размер ячейки сетки, м - 0.1

погрешность в определении температуры, ^C - 0.1

ВВЕДИТЕ ГPАНИЧНЫЕ УСЛОВИЯ:

температура поверхности А, ^C - 120

температура поверхности B, ^C  - 300

температура жидкости,

омывающая поверхность С, ^С - 30

коэффициент теплоотдачи от поверхности С

alfa1, Вт/(м2K) - 40

температура жидкости,

омывающая поверхность D, ^C - 200

коэффициент теплоотдачи от поверхности D

alfa2, Вт\(м2К) - 120

коэффициент теплопроводности LAMDA, Вт/(м2*К) - 50

Для представления блоков 2, 4, 5 использован символ "предопределенный процесс" для того, чтобы показать необходимость дополнительного шага раскрытия алгоритма.

В блоке 2 для выбора начальной температуры можно воспользоваться простым перебором значений температур, входящих в граничные условия и найти минимум (рис.5).

Конкретный вид блока 4 будет зависеть от выбранного численного метода решения системы уравнений. При использовании итерационного метода Зейделя один из подходов к решению системы уравнений (16) представлен на рис.6. Алгоритм рассматриваемого решения в текстуальной форме был описан при выборе численного метода (раздел 1.2).

Все значения начальных температур в теле T[i] принимаются равными наименьшей из температур.

После проверки вычислений находятся новые значения температур в 20 узлах

Текущее значение температуры Т(i) и значение температуры в том же узле на предыдущей итерации ТТ(i) сравниваются, и если их разность меньше eps, то итерационный процесс заканчивается. При невыполнении условия производится подготовка к следующей итерации. Максимальное число итераций задано числом М. Обычно сходимость вычислительного процесса для задач данного типа достигается при М<50. Использование консервативной конечно-разностной схемы уже предполагает выполнение для системы уравнений условия сходимости т.е сумма отношений коэффициентов любой строки к диагональному коэффициенту меньше единицы.

Если по какой либо причине (допущена ошибка при составлении системы уравнений и т.п.) вычислительный процесс расходится, то необходимо при выводе информации предусмотреть сообщение об этом.

Выходная информация должна содержать распределение температуры в оC, рассчитанное итерационным методом.

Необходимо предусмотреть не только вывод результатов расчета на печать, но и вывод исходных данных.

Алгоритм должен предусматривать возможность расчета системы более чем из 20 уравнений.

2.4 Н а п и с а н и е п р о г р а м м ы и п о д г о т о в к а е е к в в о д у н а Э В М

При написании программы следует учитывать те обстоятельства, что работа не предусматривает использование библиотеки стандартных программ из-за специфики поставленной задачи. Для удобства реализации вспомогательных алгоритмов соответствующие программы составляются самим студентом.

Особенности работы на персональном компьютере в системе Турбо-паскаль 5.5 подробно изложены в литературе [6-9, 12...15]. Студент должен на уровне не программирующего пользователя обладать необходимыми знаниями о работе на персональном компьютере [10,11].

2.5. Т е с т и р о в а н и е, о т л а д к а п р о г р а м м ы и р е ш е н и е з а д а ч и н а Э В М

Основная цель этапа отладки - выявление и исправление ошибок. Процесс отладки практически состоит из многократных попыток выполнения программы на машине и анализе получаемых неудовлетворительных результатов.

Процессу выполнения программы на ЭВМ предшествует трансляция программы. Программа, написанная на языке программирования, с помощью специальной программы, называемой транслятором, переводится на язык машинных команд ЭВМ. Процесс такого перевода называется трансляцией.

На этапе в ы п о л н е н и я в программу вводятся необходимые исходные данные и выводятся результаты расчета. Поэтому все многообразие ошибок, обнаруживаемых в процессе отладки, условно делятся на ошибки, обнаруженные на этапах трансляции, редактирования и собственно выполнения программы. Форма сообщения об ошибках и их характере зависит от системы в которой работает пользователь на языке Паскаль. Интегрированная среда Турбо-паскаль предоставляет широкие возможности по созданию программных продуктов [14,15].

После того как программа становится работоспособной, производится ее т е с т и р о в а н и е, задачей которого является проверка правильности функционирования во всем диапазоне допустимых значений исходных данных.

После окончания отладки программы и счета необходимо оценить полученные результаты с точки зрения критериев, которым они должны удовлетворять, сделать необходимые выводы о достижении поставленных конечных целей.

Л И Т Е Р А Т У Р А

1. Калиткин Н.Н. Численные методы. - М.: Наука, 1978.- 670 с.

2. Самарский А.А. Теория разностных схем. - М.: Наука, 1983.

3. Крейт Ф., Блэк У. Основы теплопередачи: Пер. с англ.- М.: Мир,1983. - 512 с.

4. Дульнев Г.Н., Парфенов В.Г., Сигалов А.В. Применение ЭВМ для решения задач теплообмена: Учебное пособие для теплофизич. И теплоэнергетических спец. вузов.- М.: Высш. шк.,1990.-207 с.

5. Ши Д. Численные методы в задачах теплообмена: Пер.с англ.-М.:Мир,1988.-544с.

6. Вычислительная техника и программирование: Учебн. для техн.вузов / А.В. Петров, В.Е. Алексеев, А.С. Ваулин и др. Под редакцией А.В. Петрова. - М.: Высш. шк., 1990. - 479 с.

7. Шуп Т. Прикладные численные методы в физике и технике: Пер. с англ.- М.: Высш.шк.,1990.-239 с.

8. Вычислительная техника и программирование. Практикум по программированию: Прак.пособие / В.Е. Алексеев, А.С. Ваулин, Г.Б. Петрова. Под ред. А.В. Петрова.- М.: Высш. ШК.,1991. - 400 с.

9. Перминов О.Н. Язык программирования Паскаль: Справвочник. -М.:Радио и связь, 1989. - 128 с.

10.Фигурнов В.Э. IBM PC для пользователя, 2-е изд.,перераб. И доп.- М.: Финансы и статистика, Юнити 1992. - 288 с.

11.Ширшов Е.В. Пособие для начинающего пользователя по работе на персональном компьютере IBM PC. Архангельск: ИВЦ "Информтех", 1992. - 70 с.

12.Бородич Ю.С., Вальвачев А.Н., Кузмич А.И. Паскаль для персональных компьютеров: Справочное пособие.- МН.: Высш. шк.: фБР ГИТМП "Ника", 1991.-365 с.

13.Поляков Д.Б., Круглов И.Ю. Программирование в среде Турбо Паскаль (Версия 5.5). Справ.-метод. пособие.- М.: Из-во МАИ,1992. - 576 с.

14.Краткое руководство по TURBO PASCAL 5.5.- М.: НПФ "И.В.К.-СОФТ",1991.- 84 с.

15.Мишнев Б.Ф. Интегрированная среда программирования Турбопаскаль версии 5.5. Пособие по использованию. Мн.: Мп.: МЕТЭКС, 1991.- 40 с.

О с т а ш е в С. И.

профессор

кафедры теплотехники

ком.1424


Информация о работе «Расчет радиаторов»
Раздел: Теплотехника
Количество знаков с пробелами: 27236
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
55241
10
2

... вала. Таблица 4.3. Результаты расчета крутящего момента По полученным в табл 8. данным Мкр строим график в масштабе Мм= и Мφ=3º в мм. Определяем средний крутящий момент двигателя: – по данным теплового расчета: Мкр.ср.= Мi = Ме / ηм , Н×м ; (116) Мкр.ср.= 220,81 / 0,879 = 251,2 Н×м. – по площади, заключенной под кривой Мкр: Мкр.ср= (F1-F2) ·Мм / ...

Скачать
11975
2
1

... механическим КПД hм =0,95. Среднее эффективное давление цикла (27)  МПа Термический КПД цикла (28) ® Геометрические характеристики двигателя Рабочий объем цилиндра   (30) ®  л Определение диаметра цилиндра и рабочего хода поршня При заданном значении .  => Расчет теплообменной поверхности радиатора   1.  Исходные данные Мощность двигателя Рe=60Вт Температура воды ...

Скачать
144932
15
26

... изменений   Далее будет предложен и рассмотрен вариант усовершенствования системы охлаждения рассматриваемого в данной работе двигателя ЗМЗ-406 автомобилей ГАЗ 2705, 3221 «ГАЗЕЛЬ». Описание целей и элементов доработки системы охлаждения двигателя ЗМЗ-406 по пунктам приведены ниже. Основные элементы системы и режимы работы приведены на рис. 20…24. 1. Вместо вентилятора и гидронасоса с ...

Скачать
64619
15
16

... (ОАСУ) и общегосударственную автоматизированную систему управления (ОГАС). Проектируемое предприятие является по принадлежности предприятием общего пользования, осуществляющее перевозки пассажиров; по организации производственной деятельности – комплексное. Подвижной состав АТП однотипен - 180 автомобилей ПАЗ-3206. Основные характеристики этих автомобилей представлены в таблице 1.1, а их внешний ...

0 комментариев


Наверх