Введение

Генераторы постоянного тока долгое время были единственным типом источников электрической энергии, применявшихся для пи­тания потребителей и заряда аккумуляторной батареи на авто­мобилях.

В обмотке якоря генератора постоянного тока индуктируется ток переменного направления (переменный ток), который затем преобразуется в ток постоянного направления (постоянный ток) коллектором. Коллектор, таким образом, играет 'роль выпрями­теля. Однако процесс выпрямления тока коллектором связан с искрением под щетками, которое вызывает повышенный износ коллектора и щеток, особенно при большой частоте вращения якоря.

С увеличением мощности и количества потребителей электри­ческой энергии на автомобиле размеры и масса генераторов по­стоянного тока настолько возросли, что размещать их на двига­телях стало трудно, а повышение частоты вращения коленчатого вала двигателя и передаточного числа привода генератора уве­личило износ коллектора и щеток. В связи с этим вместо генера­торов постоянного тока стали применять автомобильные генера­торы переменного тока, в которых преобразование переменного тока в постоянный осуществляется полупроводниковыми выпря­мителями. Комплектно с генераторами переменного тока спроек­тированы и внедрены в производство новые системы регулирования напряжения вместо прежних вибрационных элект­ромагнитных регуляторов напряжения. К ним относятся контакт­но-транзисторные и бесконтактные транзисторные регуляторы на­пряжения.

В последние годы разработаны и освоены в производстве бес­контактные транзисторные регуляторы напряжения на интеграль­ных схемах, очень малые габариты которых позволяют встроить их в генератор.

Комплект генератора постоянного тока с реле-регулятором или регулятором напряжения, а также комплект генератора пе­ременного тока с выпрямителем и регулятором напряжения бу­дем называть генераторной установкой.

Генераторные установки переменного тока обладают рядом преимуществ по сравнению с генераторными установками посто­янного тока.

В генераторе переменного тока отсутствуют коллектор и щет­ки, снимающие с коллекторных пластин весь ток нагрузки. Вме­сто них имеются контактные кольца и щетки, служащие для подвода во вращающуюся обмотку лишь небольшого по величине тока возбуждения генератора. Поэтому износ контактных колец и щеток невелик. В транзисторных регуляторах напряжения вооб­ще нет вибрационных контактов, а в контактно-транзисторных регуляторах напряжения вибрационные контакты значительно разгружены и разрывают лишь небольшой ток.

Все это увеличивает срок службы генераторной установки пе­ременного тока почти вдвое по сравнению с генераторной уста­новкой постоянного тока, а повышение срока службы генератор­ной установки снижает стоимость эксплуатационных затрат.

Сосредоточенная цилиндрическая обмотка возбуждения и клювообразные полюса ротора автомобильного генератора пере­менного тока, а также отсутствие коллектора дают возможность при равных габаритных размерах получить большую мощность и сократить расход меди в 3 раза по сравнению с генераторами постоянного тока. Более низкая частота вращения начала отдачи генератора переменного тока обеспечивает лучший заряд акку­муляторной батареи в условиях эксплуатации автомобиля в го­родских условиях.

Первые автомобильные генераторы переменного тока были спроектированы для работы с отдельными селеновыми выпрями­телями и вибрационными регуляторами напряжения. Селеновые выпрямители громоздки и их приходилось размещать отдельно от генератора в местах, обеспечивающих их хорошее охлаждение, из-за чего требовалась дополнительная проводка от генератора к выпрямителю. Кроме того, они недостаточно теплостойки и допускают максимальную рабочую температуру не выше +80°С. Поэтому селеновые выпрямители в дальнейшем были заменены кремниевыми выпрямителями, более теплостойкими и малогаба­ритными, допускающими их размещение внутри генератора. Виб­рационные регуляторы напряжения также заменяются контактно-транзисторными и бесконтактными регуляторами напряжения.

В настоящее время закончен перевод всех типов отечествен­ных автомобилей на комплектацию генераторными установками переменного тока. Мощность генераторных установок для массо­вых автомобилей увеличилась более чем в 2 раза — с 250 Вт до 500—1000 Вт; ресурс увеличен со 100—150 до 150—300 тыс. км. Начат выпуск генераторов для автобусов ПАЗ и КАвЗ с встроен­ным выпрямительным блоком и встроенным интегральным регу­лятором напряжения. В дальнейшем все типы автомобильных ге­нераторов будут иметь встроенные выпрямители и регуляторы на­пряжения. Развитие применения этих новых конструкций требует изучения принципов работы, характеристик, правил эксплуатации и ремонта автомобильных генераторов переменного тока.



1. Устройство генераторной установки

Генераторная установка переменного тока состоит из трех­фазного синхронного генератора с электромагнитным возбужде­нием, выпрямителя и регулятора напряжения вибрационного, контактно-транзисторного или бесконтактного типа.

В зависимости от способа контроля заряда аккумуляторной батареи существуют две схемы соединения генераторной установ­ки: схема с амперметром (рис. 1) и схема с контрольной лампой (рис. 2). Во избежание разряда аккумуляторной батареи на об­мотку возбуждения генератора регулятор напряжения включают в общую цепь через выключатель зажигания.

Особенностью автомобильного трехфазного синхронного гене­ратора (рис. 3) является применение клювообразных полюсов и обмотки возбуждения, состоящей из одной катушки.

В отличие от синхронных явнополюсных генераторов общепро­мышленного назначения в автомобильных генераторах с клюво-образными полюсами магнитные потоки отдельных полюсов (по­казаны на рис. 3 пунктиром) замыкаются через сердечник ротора и образуют полный магнитный поток генератора, равный сумме магнитных потоков всех полюсов одинаковой полярности. Это дает возможность применить одну сосредоточенную обмотку воз­буждения простой формы и расходовать на ее изготовление ми­нимальное количество проводникового материала — меди. Концы обмотки возбуждения выводят к контактным кольцам, располо­женным на валу ротора.

В отечественных генераторах число полюсов ротора равно 12. Ротор генератора (рис. 3) состоит из вала с закрепленными на нем втулкой с катушкой возбуждения и полюсными наконечни­ками (клювами). Роторы всех генераторов проходят динамиче­скую балансировку. Для балансировки в полюсах надсверливают на небольшую глубину отверстия диаметром 4—8 мм в зависи­мости от размеров генератора. У некоторых типов генераторов, например Г502, полюсные наконечники отжигают для улучшения их магнитных свойств.

Пакет статора набирают из листов электротехнической стали. В пазах статора размещают трехфазную обмотку. Число пазов может быть различным при одном и том же числе полюсов ро­тора и определяется типом трехфазной обмотки и электрическими характеристиками генератора.

При открытом пазе (рис. 4, а) витки обмотки удерживаются текстолитовым клином. При полузакрытом пазе (рис. 4, б) про­вода обмотки при многовитковых катушках закрепляют хлорви

ниловыми трубками, деревянны­ми или бумажными клиньями. Если катушка обмотки статора имеет один виток, то размеры паза подбирают таким образом, что какого-либо закрепления проводов в пазу не требуется (рис. 4, в).

Рис. 1. Схема соединений генера­торной установки переменного тока с амперметром дя контроля заря­да аккумуляторной батареи:

1 - генератор: 2 - выпрямительное уст­ройство; 3 - регулирующее устройство:

4 - выключатель зажигания; 5 – амп- ерметр;

Ш - вывод обмотки возбуждения: плюсовой вывод выпрямителя

Пазы всех типов изолируются электрокартоном, пленкокартоном или специальным компаун­дом. Для обмоток статора и воз­буждения используют провода с изоляцией различными лаками марок ПЭВ1, ПЭВ2, ПЭТВ, ПЭТВТ, ПЭС и др. Обмотки грех фаз статора при мощности генератора до 500—700 Вт сое­диняются в звезду, при большей мощности — в треугольник или в двойную звезду. Это вызвано тем, что при возрастании мощ­ности генератора увеличивается диаметр провода обмотки стато­ра и намотка становится затруд­нительной — толстый провод трудно гнется. Соединение в тре­угольник или в двойную звезду позволяет уменьшить силу тока в проводе обмотки и, следова­тельно, использовать более тон­кий провод.

Схему обмотки статора по ти­пу одинарной звезды можно ис­пользовать для генераторов с числом пазов на полюс и фазу 0,5; 1 и 2. Каждая фаза содер­жит шесть непрерывно намотан­ных катушек (рис. 5 и 6), содер­жащих, каждая несколько вит­ков.

Рис. 2. Схема соединений генера­торной установки переменного тока с контрольной лампой заряда ак­кумуляторной батареи:

1 — генератор; 1 — выпрямительное устройство; 3 — регулирующее устройство;

4 — реле контроля заряда; 5 — контроль­ная лампа; 6 - выключатель зажигания

Поскольку схема соедине­ния катушек между собой не зависит от числа витков в катуш­ке, то все катушки изображены одновитковыми. Начала и концы всех трех фаз обмотки статора обозначены соответственно бук­вами Н и К. Для соединения в звезду концы всех фаз K1, К2 и К3. соединяются между собой и образуют нулевую точку обмотки. Начала трех фаз Н1, Н2 и Н3 соединяются с выводами. Соединение треугольником применяется редко из-за сложности монтажа катушек: конец первой фазы К1 соединяется с началом второй фазы Н2, конец второй К2 — с началом третьей Н3; конец третьей К3 с началом первой фазы К1 и от всех этих точек соеди­нения подводятся провода к выводным зажимам.

Рис. 3. Схема устройства автомобильного генератора переменного тока: 1 - обмотка возбуждения; 2 - клювообразные полюса; 3 - контактные кольца; 4 - щеткодержатешь; 5 - статор; 6 – трехфахзная обмотка статора; 7 – крышка со стороны привода; 8 – шкив; 9 – вентилятор; 10 – крышка со стороны контактных колец

При соединении в двойную «звезду» каждая фаза состоит из двух параллельных ветвей, в каждой ветви по три непрерывно намотанных катушки (рис. 7).

С целью уменьшения размеров лобовых частей катушек и, сле­довательно, уменьшения габаритов генератора иногда использу­ют обмотку, в которой каждую катушку делят на две части (на­мотка «в развал») и укладывают, как показано на рис. 8.

Вместо того чтобы, например, полное число витков первой катушки первой фазы наматывать в пазы 1—4, а второй — в пазы 7—10, наматывают в пазы 1—4 только половину витков первой катушки. Затем в пазы 4—7 наматывают вторую половину вит­ков первой катушки в обратном направлении и т.д. (рис. 8). При таком способе намотки торцевые части катушек 1—4 и 4—7 бу­дут иметь только половинное число витков и будут, следователь­но, иметь меньший размер («вылет») в осевом направлении. Та­ким же образом наматывают катушки остальных фаз.

На рис. 8 более детально показана намотка катушек только первой фазы.

Рис. 4. Форма пазов статора:

а — открытая; б — полузакрытая; в — полузакрытая при одновитковых катушках

Рис. 5. Схема обмотки статора при соединении фаз в звезду и числе пазов 18:

Н1, Н2 Н3 — начала фаз;

К1 K2, K2 — концы фаз

Рис. 6. Схема обмотки статора при соединении фаз в звезду и числе пазов 36:

Н1, H2 Н3 — начала фаз;

K1 К2. К3 — концы фаз

Рис. 7. Схема соединений обмоток фаз статора в двойную звезду (число па­зов 18): Н1 H2, Н3 К1 K2 К3 — начала и концы фаз первой звезды; Н4 Н5. Н6: К4, K5,К6 — начала и концы фаз второй звезды;
HI , HII ,HIII – выводы фаз обмоток статора

Чтобы не усложнять чертежа, половины катушек остальных двух фаз условно показаны слитными боковыми сторонами, хотя все они наматываются таким же образом, как описано выше для первой фазы. Фазы обмотки, изображенной на рис. 8, соединены в двойную звезду.

Рис. 8. Схема соединений обмоток статора в двойную звезду с намоткой «в развал» (число пазов 36):

Н1, Н2, Н3; К1 К2, К3 — начало и концы фаз первой звезды;

Н4 Н5, Н6. К4, К5, К6 — начало и концы фаз второй звезды;

НI ,HII , HIII — выводы фаз обмоток статора

У некоторых генераторов размещают в статоре две самостоя­тельные трехфазные обмотки, соединенные в звезду и имеющие различное число витков или различное сечение провода. В каче­стве примера на рис. 9 показана схема соединений такого гене­ратора. Обмотка статора 2 имеет большее число витков провода меньшего сечения, чем обмотка 3, которая, наоборот, имеет мень­ше витков более толстого провода. Обе обмотки присоединены каждая к своему комплекту вентилей выпрямительного устрой­ства 4, все вентили которого имеют общие выводы «+» и «—». В остальном схема соединения генератора с регулятором напря­жения РН и батареей 5 — обычного типа.

Такая конструкция позволяет обеспечить достаточно большую мощность генератора на большой скорости движения автомобиля и в то же время сохранить малую частоту вращения начала от­дачи, необходимую при городской езде.

При работе автомобиля в городе, при малой частоте враще­ния коленчатого вала двигателя в генераторе работает обмотка 2 с большим числом витков и питает через выпрямитель 4 аккуму­ляторную батарею 5. При движении автомобиля с большой ско­ростью на загородных дорогах вступает в работу обмотка 3 и те­перь к потребителям поступает ток от двух обмоток, различный по величине: от обмотки 2 (примерно 1/3) и от обмотки 3 (пример­но 2/3 общей величины). На рис. 9 справа показаны характери­стики тока, отдаваемого отдельно обмотками 2 и 3, а также при совместном действии обеих обмоток в зависимости от частоты вращения генератора.

Рис. 9. Схема соединений генераторной установки с двумя автономными об­мотками фаз статора (а) и характеристики генератора (б):

1 — обмотка возбуждения генератора; 2 — первая трехфазная обмотка статора; 3 — вто­рая трехфазная обмотка статора; 4 — выпрямительное устройсгво; 5 — аккумуляторная батарея; 6 — токоскоростная характеристика обмотки 2: 7 — токоскоростная характеристи­ка обмотки 3; 8 — токоскоростная характеристика обеих обмоток генератора; 9 — выключатель зажигания; 10 — выключатель

Крышки 7 и 10 генератора (см. рис. 3) отливают из алюми­ниевого сплава методом литья в кокиль или под давлением. По­садочные места под шариковые подшипники и отверстия в крон­штейнах крышек, как правило, армируют чугунными или сталь­ными втулками. Некоторые типы генераторов этой армировки не имеют.

Пластмассовый щеткодержатель 4 (рис. 3) с щетками распо­ложен на крышке со стороны контактных колец. В случае приме­нения интегрального регулятора напряжения, встроенного в ге­нератор, его располагают на щеткодержателе. Крышки имеют от­верстия (не показанные на рис. 3) для проточной вентиляции в осевом направлении. Вентилятор 9 имеет два конструктивных исполнения. У некоторых типов генераторов вентилятор состоит из крыльчатки и поддона, соединенных между собой точечной сваркой, у некоторых из одной крыльчатки. Шкив 8 чугунный литой или стальной штампованный. Вентилятор и шкив соеди­няются с валом при помощи шпонки.

В большинстве типов автомобильных генераторов переменного тока, в том числе во всех отечественных конструкциях, выпрями­тельное устройство рассчитано на двухполупериодное выпрямле­ние трехфазного тока, и имеет, следовательно, шесть вентилей.

Выпрямительные устройства имеют два исполнения: в виде единого конструктивного узла с вентилями, размещенными не­посредственно в теплоотводящих элементах пластмассового осно­вания, или в виде отдельных вентилей, запрессованных в теплоотводящие пластины. Для обеспечения интенсивного охлаждения выпрямительные устройства монтируют в крышке со стороны контактных колец.

Генератор с встроенным кремниевым выпрямителем имеет два изолированных от корпуса выводных зажима: зажим <+ > для подключения генератора к аккумуляторной батарее и на­грузке и зажим Ш для соединения обмотки возбуждения генера­тора с регулирующим устройством. Третьим (минусовым) зажи­мом является винт М (масса), служащий для соединения корпу­са генератора с шасси (массой) автомобиля.


Информация о работе «Генераторные установки переменного тока»
Раздел: Технология
Количество знаков с пробелами: 39721
Количество таблиц: 4
Количество изображений: 17

Похожие работы

Скачать
60223
3
3

... д. Асинхронные двигатели также применяются в промышленности, например, для приводов крановых установок общепромышленного назначения, а также различных грузовых лебедок и других устройств, необходимых в производстве. Можно сказать, что электродвигатели переменного тока имеют огромное значение для большинства видов промышленности. Глава 2 Основные сведения о ...

Скачать
18776
1
3

... из него элемента ограничения тока и реле обратного тока; уменьшение стоимости эксплуатационных затрат в связи с большей надежностью работы и повышенным сроком службы. Первые автомобильные генераторы переменного тока были спроектированы для работы с отдельными селеновыми выпрямителями и вибрационными регуляторами напряжения. Селеновые выпрямители имели значительные размеры и их приходилось ...

Скачать
342209
3
154

... особенностью машины постоянного тока является наличие коллектора и скользящего контакта между обмоткой якоря и внешней электрической цепью. 2.2 Устройство машины постоянного тока Машина постоянного тока (рис. 2.3) по конструктивному исполнению подобна обращенной синхронной машине, у которой обмотка якоря расположена на роторе, а обмотка возбуждения – на статоре. Основное отличие заключается ...

Скачать
89221
8
39

... использовался эффект генерации газа фторопластом при воздействии на него высокой температуры электрической дуги. Глава 4. Расчёт и оптимизация приводного устройства элегазового генераторного выключателя В соответствии с расчетом дугогасительного устройства, приведенного в гл.3 для обеспечения времени срабатывания, хода контактов при отключении необходимо разработать мощный гидропривод. В ...

0 комментариев


Наверх