2.3.3. Физико-химические основы переработки пластмасс


В основе процессов переработки пластмасс находятся физические и физико-химические процессы структурообразования и формования:

1) нагревание, плавление, стеклование и охлаждение;

2) изменение объема и размеров при воздействии температуры и давления;

3) деформирование, сопровождающееся развитием пластической (необратимой) и высокоэластичной деформации и ориентацией макромолекулярных цепей;

4) релаксационные процессы;

5) формирование надмолекулярной структуры, кристаллизация полимеров (кристаллизующихся);

6) деструкция полимеров.

Эти процессы могут проходить одновременно и взаимосвязанно. Преобладающим будет только один процесс на определенной стадии.

В процессе формования изделий полимер нагревают до высокой температуры, деформируют путем сдвига, растяжения или сжатия и затем охлаждают. В зависимости от параметров указанных процессов можно в значительной мере изменить структуру, конформацию макромолекул, а также физико-механические, оптические и другие характеристики полимеров.

При охлаждении большого количества полимеров протекает процесс кристаллизации.

Кристаллизация в зависимости от состояния расплава приводит к различным видам структуры. Кристаллизация из расплава полимера в равновесном состоянии без деформации приводит к образованию сферолитных структур. Центром образования таких структур является зародыш , от которого образуются лучеобразные фибриллы, состоящие из множества упакованных ламелей. Фибриллы , разрастаясь в радиальном направлении и в ширину, образуют сферообразные структуры - сферолиты. Сферолиты образуются одновременно в большом числе центров кристаллизации. На основе этого сферолиты в местах контакта образуют грани и представляют собой многогранники произвольной формы и размеров. Электронно-микроскопичес-кие исследования показывают, что фибрилла сферолитов составлена из множества ламелей, уложенных друг на друга (рис.7) и скрученных вокруг радиуса сферолита.

Кристаллизация из расплава полимера протекает при введении в полимерный материал кристаллизаторов - зародышей.

Если кристаллизация протекает под высоким давлением (300...500 Мпа) и при высокой температуре, то образуется кристаллическая структура из выпрямленных цепей; при быстром охлаждении того же расплава кристаллизация проходит с образованием сложных цепей, макромолекулы в этом случае в расплаве в виде доменов, а быстрое охлаждение не позволяет им перейти в новую конформацию, т.е. приобрести вытянутую форму. Установлено также, что с увеличением давления температура кристаллизации повышается. Практическое значение этого свойства: возможность перехода полимера непосредственно из расплава без охлаждения в квазикристаллическое состояние при повышении давления; при этом исключается течение и затормаживаются релаксационные процессы. При повышении давления образуются более мелкие сферолиты и поэтому увеличивается механическая прочность изделий. Размеры кристаллов также зависят от скорости охлаждения и температуры в процессе формования изделия. При высокой скорости охлаждения получают мелкокристаллическую структуру, так как времени на перегруппировку кристаллов недостаточно.

Более крупную структуру полимера можно получить при увеличении температуры, времени выдержки и медленном охлаждении или путем предварительного нагрева расплава до более высокой температуры перед кристаллизацией.

Форма кристаллов может быть изменена. Так, используя центры кристаллизации и искусственные зародыши (1...2% от массы), можно регулировать форму кристаллов. При использовании подложки-кристаллизатора у ее поверхности возникает большое количество центров кристаллизации и образуется плотно упакованный слой из перпендикулярно расположенных к поверхности кристаллов. Искусственные зародыши являются дополнительными центрами кристаллизации, форма кристалла при этом зависит от формы зародыша кристаллизации, на мелких кристаллах растут сферолитные структуры, на длинных игольчатых кристаллах - лентообразные структуры. Структурообразователями (зародышами) в этом случае являются окислы алюминия и ванадия, кварц, двуокись титана и др. Структурообразователи обычно способствуют измельчению сферолитной структуры полимера.

Нестационарные условия теплопередачи и скорости охлаждения при формовании изделий из полимеров способствуют получению изделий с неоднородной структурой (более мелкие кристаллы у поверхностных слоев).

В случае необходимости однородные свойства изделия можно обеспечить с помощью отжига или последующей термообработки при температуре ниже температуры плавления. При отжиге уменьшается объем изделия и повышается плотность; причем чем выше температура и больше время выдержки, тем выше плотность изделия. Термообработка целесообразна в тех случаях, когда необходимы повышенные твердость, модуль упругости, механическая прочность, теплостойкость и стойкость к циклическим нагрузкам; при этом уменьшаются относительное удлинение и ударная вязкость.

Полнота протекания указанных процессов, кроме деструкции в значительной мере определяет качество готового изделия, а скорость протекания этих процессов определяет производительность способа переработки. На качество изделия в значительной степени влияет скорость протекания деструкции полимера, повышаемая термическим и механическим воздействием на материал со стороны рабочих органов инструментов при формировании.

Форму изделия из термопласта получают в результате развития в полимере пластической или высокоэластичной деформации под действием давления при нагреве полимера. При переработке реактопластов формирование изделия обеспечивают путем сочетания физических процессов формирования с химическими реакциями отверждения полимеров. При этом свойства изделий определяют скорость и полнота отверждения. Неполное использование при отверждении реакционных способностей полимера обусловливает нестабильность свойств изделия из реактопластов во времени и протекание деструкционных процессов в готовых изделиях. Низкая вязкость реактопластов при формировании приводит к снижению неравномерности свойств, увеличению скорости релаксации напряжений и меньшему влиянию деструкции при переработке на качество готовых изделий из реактопластов.

В зависимости от способа переработки отверждение совмещается с формованием изделия (при прессовании), происходит после оформления изделия в полости формы (литьевое прессование и литье под давлением реактопластов) или при термической обработке сформованной заготовки (при формовании крупногабаритных изделий, например, листов гетинакса, стеклотекстолита и др.). Полное отверждение реактопластов требует в некоторых случаях нескольких часов. Для увеличения съема продукции с оборудования окончательное отверждение может производиться вне формующей оснастки, так как устойчивость формы приобретается задолго до завершения этого процесса. По этой же причине изделие извлекают из формы без охлаждения.

При переработке полимеров (особенно термопластов) происходит ориентация макромолекул в направлении течения материала. Наряду с различием в ориентации на разных участках неоднородных по сечению и длине изделий возникает структурная неоднородность и развиваются внутренние напряжения.

Наличие температурных перепадов по сечению и длине детали ведет к еще большей структурной неоднородности и появлению дополнительных напряжений, связанных с различием скоростей охлаждения, кристаллизации, релаксации, и различной степенью отверждения.

Неоднородность свойств материала (по указанным причинам) не всегда допустима и часто приводит к браку (по нестабильности физических свойств, размеров, короблению, растрескиванию). Снижение неоднородности молекулярной структуры и внутренних напряжений удается достигнуть термической обработкой готового изделия. Однако более эффективно использование методов направленного регулирования структур в процессах переработки. Для этих целей в полимер вводят добавки, оказывающие влияние на процессы образования надмолекулярных структур и способствующие получению материалов с желаемой структурой.



Информация о работе «Изготавление изделий из пласмассы»
Раздел: Технология
Количество знаков с пробелами: 40968
Количество таблиц: 3
Количество изображений: 0

Похожие работы

Скачать
10011
0
0

... пленок адсорбированного газа, играющих роль своеобразной смазки. Когда такие пленки не образуются, коэффициент трения возрастает и достигает 0.5-0.55. Низкий коэффициент трения обуславливает исключительную износостойкость алмаза на истирание, которая превышает износостойкость корунда в 90 раз, а других абразивных материалов - в сотни и тысячи раз. В результате, например, при шлифовании изделий из ...

0 комментариев


Наверх