7. Скорость теплоотдачи воды : w = G / 3600 × f × r = 0,1 м / сек ;

где : G = 28.000 кг / ч – количество воды проходящее через пароводоподогреватель при его работе со 100% загруженностью.

8. Коэффициент теплоотдачи воды ( по приложению 7 ) :

a В = А5 × w0,8 / d 0,2 = 3.499,5 кДж / м2 × ч × оС ;

где : А5 = 2350 ;

d = 0,018 м - диаметр трубок ;

9. Расчетный коэффициент теплопередачи при lлат = 210 кДж / м2 × ч × оС :

к = b / ( 1 / a п + d лат / lлат + 1 / a В ) = 2469,45 кДж / м2 × ч × оС ;

где : d лат – толщина стенки латунной трубки ;

10. Необходимая поверхность нагрева : F = Qобщ / ( к × dt ) = 9,2 м2  ;

Таким образом выбранный типовой пароводоподогреватель имеет некоторый запас поверхности нагрева, а следовательно абсолютно подходит для установки в систему «пар-вода».

Принципиальная схема работы данных подогревателей воды отражена на чертеже №3 системы парового снабжения.

Гидравический расчет циркуляционной системы горячей воды не производиться, т.к. установка двух пароводоподогревателей производится вместо двух водогрейных котлов и потери на трение в трубопроводах изменяются незначительно.

 

 

V. Расчет и выбор котла-утилизатора на ДГ.

Необходимо произвести расчет получаемой теплоты от отработанных газов при работе ДГ на 50% нагрузке ( согласно вахтенному журналу ) :

Q о.г. = 0,5 × Ne × gг × cp × ( t1 – t2 ) × hт , где

0,5 – коэффициент учитывающий 50% нагрузку ДГ ;

Ne – эффективная мощность ДГ ( кВт ) ;

gг – удельная масса газов на выходе из ДГ ( 6 – 7 кг/кВт × ч ) ;

cp – массовая теплоемкость газов ( 1,05 – 1,13 кДж/кг × ч ) ;

t1 – температура газов на входе в УК ( на 10оС ниже температуры газов на выходе из ДГ ) ;

t2 – температура газов на выходе из УК ( для водогрейного 185 – 215  оС ) ;

hт – коэффициент потери теплоты в окружающую среду ( 0,95 ) ;

Q о.г. = 0,5 × 330 × 6 × 1,05 × ( 510 – 380 ) × 0,95 = 158.195,75 кДж/ч

Исходя из полученного количества теплоты :

1. необходимо выбрать и установить котел-утилизатор на газоходы всех трех ДГ, путем соединения их ( газоходов ) в конструкцию, принципиальная схема которой отражена на чертеже №6 / при этом используется регуляторная пневматическая заслонка для введения утиль-котла в работу от какого-либо газохода / ;

2. Модернизировать систему радиаторного отопления так, чтобы ее можно было отключить от общей тепловой централи потребителей горячей воды и замкнуть на контур котла-утилизатора ДГ. Так как один из ДГ во время зимней стоянки все время работает, а система радиаторного отопления будет работь от собственного циркуляционного насоса ( расчет см. ниже ), то данный вариант может быть использован.

1.    По полученному значению выбираем водогрейный утилизационный котел марки КАУ – 4,5 со следующими техническими характеристиками :

Рабочее давление : Р = 0,2 МПа ;

Поверхность нагрева : Нк = 4,5 м2 ;

Теплопроизводительность : Qк = 170.000 кДж / ч ;

Температура воды на выходе : t = 95 оС ;

Масса котла с водой : 460 кг ;

Габариты котла : d = 0,75 м – диаметр котла ;

h = 2,4 м – высота котла ;

2.    Для модернизации системы радиаторного отопления нужно произвести гидравлический расчет трубопроводов и по полученному значению напора выбрать насос горячей воды. Тогда при задействовании утилизационного котла любого из дизель-генераторов снабжение горячей водой всех потребителей на судне производится автономным котлом КВ 1,6 / 5 , а системы радиаторного отопления ( после переключения соответствующих вентелей ) этим утиль-котлом КАУ – 4,5 .

VI. Гидравлический расчет трубопроводов радиаторного отопления.

Принципиальная схема переключения трубопроводов отражена на чертеже №5 данного дипломного проекта.

Гидравлический расчет производится для самого дальнего секционного радиатора, чтобы определить максимальные потери в трубопроводах и выбрать центробежный насос с соответствующим напором. Значение подачи насоса не меняется, т.к. не меняется диаметр трубопровода, а изменяется только его длина ( потери на трение ) и увеличиваются местные потери.

Вывод

 

 

 

 

 

 

 

VII. Определение дополнительной необходимой поверхности теплосъема для использования теплоты полученной во вновь устанавливаемом автономном паровом котле.

Варианты :

1.                      Установить в климатцентры дополнительные теплообменные батареи.

2.                      Установить дополнительные теплообменные батареи в зональные каналы.

3.                      Использовать батареи охлаждения в климатцентрах в качестве батарей нагрева.

Из всех возможных вариантов, самым реальным и целесообразным является вариант 3. Произведем проверочный расчет :

Теплообменники холодной и горячей воды в климацентрах имеют совершенно одинаковые технические характеристики, т.е. :

поверхность теплосъема : F = 34, 55 м2 ;

коэффициент теплопередачи : к = 81,3 кДж / м2 × час × оС ;

Всего во всей системе кондиционирования установлено 7 батарей предварительного нагрева ( БПН ) , 22 батареи дополнительного нагрева ( БДН ) и 7 батарей охлаждения ( БО ).

Расчитаем, сколько передавалось теплоты через БПН ( значения берем до замены котла ) :

Q = к × F × ( t1 – t2 ) = 154.490,32 кДж / ч ;

где : t1 = 90 оС – температура на входе в теплообменник ;

t2 = 40 оС – температура на выходе из теплообменника ;

Общее количество теплоты со всех 7 теплообменников : Q7 = 1.081.432,275 кДж / ч ;

Т.к. общее количество теплоты для системы кондиционирования было: 1.511.622кДж/ч то через БДН передавалось 430.189,725 кДж / ч ;

Отсюда, можно сделать вывод : если при замене автономного котла количество теплоты получаемой для системы кондиционирования увеличилось на 660.804 кДж/ч , и при задействовании БО в качестве дополнительных теплообменников ( батарей дополнительного нагрева ( БДН )), которые в свою очередь способны передать через себя 1.081.432,275 кДж / ч , то никакого специального расчета теплового баланса делать необязательно. Единственное, что нужно сделать это модернизировать систему трубопроводов горячей и холодной воды в климацентрах так, чтобы во время навигации БПН и БДН работали в системе горячей воды и БО – в системе холодной воды, а во время зимней стоянки БПН, БДН и БО работали в системе горячей воды. Принципиальная схема соединения трубопроводов и установки арматуры отражена в чертеже № 1 данного дипломного проекта.

 

 

VIII. Гидравлический расчет системы горячей воды системы кондиционирования

Вывод

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IX . Охрана труда.

К неблагоприятным факторам в машинном отделении, оказывающим вредное воздействие на персонал, относятся недостаточная освещенность, опасность поражения электрическим током, шум, вибрация и повышенная температура воздуха, а также его загазованность.

К основным источникам шума и вибрации на судах относят главные двигатели, дизель-генераторы, движительно-рулевой комплекс систему вентиляции.

Главные двигатели 6VD 18/15 Al-1 имеют форсированный режим работы, а следовательно, высокий уровень шума. Для уменьшения вредного воздействия шума на членов экипажа, обслуживающих СЭУ, на двигателях применяются средства дистанционного управления и комплексной автоматизации. Кроме того, контроль за работой главных и вспомогательных двигателей осуществляется с центрального поста управления, имеющего специальную звукоизоляцию. Обслуживание и ремонт главных и вспомогательных двигателей во время работы производится в специальных наушниках.

Для снижения уровня шума и вибрации от главных двигателей, дизель-генераторов и компрессоров, расположенных в машинном отделении, предусмотрена их установка на резиново-металлические виброизоляторы в районе опорных поверхностей. Средства виброизоляции и вибропоглощения снижают структурную составляющую шума в смежных помещениях. Эти средства обеспечивают снижение уровней звукового давления на 20-25 дБ почти во всем диапазоне частот.

Одним из источников шума в машинном отделении является система вентиляции. Средствами снижения шума от этой системы являются : ограничение скоростей движения воздуха по воздуховодам, установка воздухораспределителей с обтекаемыми кромками, не создающими шума при истечении из них воздуха, установка глушителей шума.

В соответствии с ГОСТ 12.0.033-74 опасные факторы классифицируются следующим образом : физические, химические, психофизиологические. Они проявляются при нарушении технологических процессов, неудовлетворительной организации работ, неиспользовании средств индивидуальной защиты.

В целях устранения влияния опасных факторов на судах проекта Q-065 предусмотрены различные мероприятия. Сильно нагретые поверхности ( выхлопные трубы двигателей, котлов, установки инсенератора, выпускные коллекторы дизелей ) защищены теплоизоляцией и специальными экранами. В данном дипломном проекте при замене водогрейного котла на паровой возникает необходимость специального инструктажа машинной команды и повышенного внимания вахтенного персонала при работе парового котла, его ослуживания и ремонта. Открытые движущиеся части механизмов закрываются кожухами, окрашенными в оранжевый цвет. Трубопроводы различных систем имеют соответствующую маркировку. Для защиты персонала, обслуживающего СЭУ, от поражения электрическим током применяются защитное заземление, резиновые коврики и средства индивидуальной защиты ( диэлектрические перчатки, калоши, специальный инструмент и т.п. ). Помещения с повышенной загазованностью ( инсенераторная ) и содержанием опасных испарений ( аккумуляторная, машинное отделение, помещение вакуум.баллона и др. ) имеют приточную и вытяжную вентиляцию. Персонал, обслуживающий СЭУ, приступает к выполнению работ в специальной одежде и после соответствующего инструктажа.

 

I). Анализ вибрации в кормовой части судна.

В процессе эксплуатации судов проекта Q-065 в ходовом режиме со 100% приводной мощностью отмечается повышенная вибрация в кормовой части. Повышение вибрации приводит к повышению шума, созданию эксплуатационных трудностей ( например, к самопроизвольному закрытию вентиляционного “грибка” системы вентиляции румпельного помещения ), появляется опасность снижения прочности сварных соединений набора корпуса и обшивки. Повышенная вибрация ( связанный с ней шум ) оказывают вредное влияние на здоровье людей, работающих в помещениях кормовой части судна и на палубе. Кроме того, необходимо учитывать, что со временем вибрация, как правило, возрастает. В связи с выше сказанным представляется целесообразным разработать меры по снижению вибрации в кормовой части судов проекта Q-065. Так как за время эксплуатации судов данного проекта в Московском Речном пароходстве замеры вибрации не проводились, мы вынуждены использовать замеры, сделанные судостроительной верфью «Корнойбург» ( Австрия ) во время испытаний головного судна «Сергей Есенин». Испытания проводились 11.01.84г. в водохранилище Альтенверт-Кремс в соответствии с программой верфи. Анализ результатов замеров вибрации показывает, что полученные параметры соответствуют, в основном, результатам предварительного расчета требованиям санитарных правил для речных и озерных судов СССР и Правилам Речного Регистра РСФСР. Однако, имеются исключения. Первым исключением является точка замера 7 ( см. Отчет по замерам т/х «Сергей Есенин» ) – ресторан, расположенный в кормовой части судна. Замер на одном из столов показал, что в диапозоне частот 16 – 32 Гц было отмечено превышение уровня виброскорости на 6 дБ. Это на 7,8% больше максимального уровня виброскорости, установленного Санитарными правилами и равного для диапозонов частот 16 и 32 Гц 78 и 77 дБ соответственно. Вторым исключением является точка замера 14 – музыкальный салон, расположенный в носовой части судна на шлюпочной палубе. Замер на одном из кресел показал превышение уровня виброскорости, допускаемого Санитарными правилами, на 3 дБ в диапозоне частот 4 Гц. Замеры в наиболее неблагоприятной точке 1, находящейся в районе гребного винта показали уровень виброскорости 84 дБ, что соответствует ускорению 4,76 м / с2 . Для пассажирских судов 1 группы максимально допускаемое ускорение общей вибрации 1 м / с2 . Из приведенного анализа видно, что вибрация в кормовой части судов проекта Q-065 превышает допустимые параметры. Параметры вибрации непосредственно зависят от массы и геометрических размеров вибрирующих тел, т.е. F = f ( m ; ri ) , где : m – масса тела ; ri – радиус инерции тела. В связи с этим существуют следующие пути снижения вибрации :

1)                Увеличение массовых показателей вибрирующих тел ;

2)                Уменьшение геометрических размеров ;

Конкретно для судов проекта Q-065 могут быть предложены следующие способы уменьшения вибрации в кормовой части :

1.    Цементная заливка шп.5-10 в районе валопровода среднего главного двигателя и заливка шп.7-12 в районе валопроводов правого и левого главных двигателей. Это позволит увеличить массу кормовой части судна, что снизит вибрацию. Кроме того, это будет влиять на уменьшение дифферента на нос, имеющего место у судов рассматриваемого проекта при полном заполнении топливных цистерн и цистерн неподготовленной питьевой воды. Однако это предложение имеет определенные недостатки. Например, в результате вибрации, ударов корпуса судна о причальные стенки во время швартовки, шлюзования и т.п. может произойти отслоение цемента от днища судна. Скапливающийся в образованном пространстве конденсат будет способствовать образованию коррозии корпуса.

2.    Установка дополнительных пиллерсов в румпельном помещении ( ахтерпике ). Эта мера также позволит снизить вибрацию в кормовой части судна за счет увеличения массы вибрирующих тел ( в результате дополнительной связи днища судна с палубным настилом ) и изменения их геометрических размеров. Количество дополнительно устанавливаемых пиллерсов зависит от наличия свободного места в румпельном помещении.

3.    Установка кормовых бракет в продольной плоскости судна вдоль осей валопроводов в районе кормовых кронштейнов винтов. Эта мера позволит уменьщить консольную часть валопроводов на 750 мм, что, в свою очередь, снизит амплитуду колебаний.

В связи с вышесказанным предлагается установить один дополнительный пиллерс в румпельном помещении на втором шпангоуте с левого борта и кормовые бракеты вдоль трех валопроводов. В чертеже №4 данного дипломного проекта графически отражены предлагаемые способы борьбы с вибрацией.

II). Расчет освещения помещения главных двигателей :

Исходные данные :

длина помещения А=7,7 ( м )

ширина помещения В=13,4 ( м )

высота помещения Н=3,2 ( м )

напряжение U=220 ( В )

Для освещения применяются люминисцентные лампы ЛД-40 ( N=40Вт, Ен=500лк )

Расчет :

1.          Расчетная высота помещения

h = H - ( hc + hp ) = 3,2 – 0,5 = 2,7 ( м ) , где

hc – свес лампы, ( м ) ;

hp = 0 – высота рабочей поверхности от палубы, ( м ) ;

H = 3,2 – высота помещения, ( м ) ;

2.          Показатель помещения

I = ( A × B ) / ( h × ( A + B )) = 1,8

3.          Световой поток одной лампы

F = 1980 ( лм ) – по таблице .

4.          Необходимое количество ламп в помещении :

n = ( k3 × z × Ен ×S ) / ( F × Kn ) = 7 ( шт. ) , где

Ен=500лк - рекомендуемая освещенность помещения ;

S = A × B - площадь помещения, ( м2 ) ;

k3  = 1,5 - коэффициент запаса ;

z = 1,1 - коэффициент неравномерности ;

Kn - коэффициент использования светового потока ;

Kn = 0,54 при i = 1,8 ;

rn = 30% - коэффициент отражения потолка ;

rст  = 70% - коэффициент отражения стен ;

X. Охрана окружающей среды

Теплоходы проекта Q-065, как источники загрязнения окружающей среды, могут быть рассмотрены в двух аспектах. Во-первых, в результате производственно-хозяйственной деятельности возможно попадание за борт бытовых сточно-фановых вод, твердых отходов, топлива, смазки, подсланевых вод. Во-вторых, загрязнение окружающей среды возможно в результате выброса в атмосферу отработанных газов двигателей и установки инсенератора.

Предупреждение загрязнения первого вида осуществляется следующими мерами :

1.    Бункеровка судна топливом и маслом производится закрытым способом. Отдача отработанного масла, подсланевых вод, сточно-фановых вод на специальные суда или береговые устройства осуществляется также закрытым способом. Во избежание попадания утечек при приемке и выдаче наливные втулки всех вышеуказанных трубопроводов выведены в один ящик, соединенный трубопроводом с цистерной масляного шлама.

2.    Накопление бытовых сточных вод на судне производится в специальные сточные цистерны емкостью 15,21 м3, 15,74 м3, 18,25 м3 и 9,13 м3 . Кроме них имеется фекальная цистерна емкостью 2 м3 и соединяемая при необходимости с цистерной сточных вод. Это позволяет обеспечить автономность по вместимости резервных сточно-фановых цистерн 1 сутки. Если нет возможности сдать сточно-фановые воды на специализированные суда или береговые устройства, то для их переработки используется станция очистки сточно-фановых вод «Нептуматик». В результате переработки очищенная и обеззараженная вода сливается за борт, а шлам поступает в установку для сжигания отходов или в шламовую цистерну, откуда может сдаваться на специализированные суда или береговые устройства. Выпускной трубопровод перекрывается клинкетом, который, в свою очередь, опечатывается пломбой.

3.    Утечное топливо от главных и вспомогательных двигателей собирается в сточные топливные цистерны вместимостью 2 х 0,4 м3 . Собранное в этих цистернах топливо после соответствующей очистки может быть возвращено в запасную топливную цистерну.

4.    Отработанное смазочное масло собирается в специально предназначенную для этого цистерну отработанного масла. Вместимость цистерны – 2 м3 . По мере накопления отработанное масло сдается на теплоходы типа «ОС». Цистерна отработанного масла и сточные топливные цистерны расположены в подсланевом пространстве машинного отделения и имеют датчики сигнализации максимального уровня.

5.    Подсланевые воды закачиваются насосами осушения в специальную цистерну емкостью 3,5 м3, расположенную в подсланевом пространстве отделения вспомогательных двигателей. Имеется сигнализация предупреждения о максимальном уровне в цистерне подсланевых вод. По мере накопления подсланевых вод они могут сдаваться на теплоходы «ОС» или поступать на переработку в сепаратор подсланевых вод «Фрам». Сепаратор работает в ручном или автоматическом режиме. Члены команды, обслуживающие СЭУ должны соблюдать постоянный контроль за состоянием уплотнений гребного вала и валов насосов, расположенных в машинном отделении в целях уменьшения накопления подсланевых вод. Во избежание откачки их за борт выходные клинкеты должны быть закрыты и опломбированы.


Информация о работе «Изменение СЭУ С. Есенин»
Раздел: Технология
Количество знаков с пробелами: 74053
Количество таблиц: 6
Количество изображений: 2

Похожие работы

Скачать
246301
0
0

погруженности о чем-то размышляет, то не о проблемах своей внутренней жизни, а о проблемах взаимоотношений с другими объектами и субъектами. Впечатление "погруженности" в себя результат того, что любое отношение к внешнему миру человек воспринимает как свое чувство. По всем этим причинам, при кооперации экстраверта с интравертом, экстраверт дуалу дает чувство уверенности в себе как в ...

Скачать
81334
2
21

... ; М.: ИНФРА-М, 1997. 2. Самыгин С.И., Столяренко Л.Д. Психология управления. Р._на-Д.: Феникс, 1997. 3. Скотт Д.Г. Конфликты и пути их преодоления. К.: Внешторгиздат, 1991. 4. Тидор С.Н. Психология управления: от личности к команде. Петрозаводск: Файн-Лайн, 1997. Тема 4. ЛИДЕРСТВО И РУКОВОДСТВО Вопросы для самоподготовки 1.  Лидерство как психологический феномен Кто такой лидер в ...

Скачать
43386
0
0

... максимально эф­фективного рекламного сообщения, способного активно по­влиять на поведение человека как потребителя. 4. Соционическая модель информационного типа Рассматривая человека как информационную систему, соционика создала информационную модель соционического типа, где каждая функция, являясь элементом информацион­ного обмена, находится на определенном уровне и канале информации В ...

Скачать
85764
6
0

... быть, важнейшим элементом психической структуры личности является самосознание. Оно формируется на протяжении всего периода социализации личности и венчает процесс формирования личности. Самосознание личности психологи определяют как Я-образ – относительно устойчивая в большей или меньшей степени осознанная , переживаемая как неповторимая система представлений индивида о самом себе, на основе ...

0 комментариев


Наверх