3.4. Виброударная обработка.
Виброударная обработка — это обработка рабочими телами деталей в замкнутом объёме при его вибрации.
Вибрационную ударную обработку подразделяют на виброабразивную и виброударную. Виброабразивную применяют для удаления с деталей заусенцев, округления острых кромок, полирования и т.д., а виброударную — для упрочнения.
Для вибрационной ударной обработки используют рабочие тела из различных материалов и жидкие рабочие среды. Кроме стальных и полимерных шариков (Г0СТ3722-81, ОСТ 1.51334-73), стальной и чугунной дроби (ГОСТ 1 1964-81 Е) применяют металлическую сечку из проволоки, гранулы из алюминиевых и цветных сплавов.
При виброударной обработке в рабочей камере, смонтированной на упругих подвесках и имеющей возможность колебаться в различных направлениях, сообщаются низкочастотные колебания — в большинстве случаев с помощью дисбалансного вибратора (рис.3.6.)
Рисунок 3.6. Схема виброударной обработки заготовок без закрепления.
1 – обрабатываемые детали;
2 – контейнер;
3 – рабочие тела;
4 – амортизаторы;
5 – вибровозбудитель.
Виброударная обработка производится в результате множества микро ударов и относительного скольжения с определённым давлением рабочих тел по поверхности обрабатываемой детали.
Рабочие тела движутся с переменным ускорением, что обеспечивает их большую подвижность. Вследствие высокой относительной подвижности рабочие тела хорошо вписываются в фасонную поверхность деталей, за счёт чего этим методом можно упрочнять как наружные, так и внутренние поверхности сложных деталей различных размеров.
В силу ограниченных энергетических возможностей продолжительность упрочнения значительна (от 10-20 мин до нескольких часов), а вероятность перенаклёпа исключается, т.е. виброударная обработка по сравнению с другими способами П.П.Д. обладает ограниченными энергетическими возможностями.
Виброобкатывание и вибровыглаживаяие.
При виброобкатывании помимо осевой подачи S (как при обкатывании и выглаживании) инструменту, поджатому к обрабатываемой поверхности с силой Р, сообщается возвратно поступательное перемещение с частотой N и амплитудой А, вдоль оси детали, вращающейся с частотой n (рисЗ.7.)
Рисунок 3.7. Схема виброобкатывания (вибровыглаживания).
При использовании в качестве инструмента стального закалённого шара в процессе называется виброобкатыванием, при использовании сферического наконечника из алмаза или другого сферического материала (радиусом R) — выглаживанием, т.к. процесс происходит в условиях трения скольжения.
Выбор материала зависит от твёрдости обрабатываемой поверхности для обработки деталей из материалов высокой твёрдости (от HRC 50 до HRC 60) применяют алмазные наконечники. Сила поджатия инструмента при выглаживании 50-200 Н, что позволяет обрабатывать маложёсткие и неровно жёсткие поверхности, а также углубления шириной 5-10 мм. При виброобкатывании сила поджатия инструмента 800-1000Н. При виброобкатьтвании и вибровыглаживании инструмент выдавливает синусоидальную канавку.
Выравнивание форм, размеров и расположения микро неровностей на поверхности достигается изменением режимов обработки: S, P, A, N, n, dm (К), канавки имеют плавные очертания с Ra 0,02...0,16 мкм. Микротвёрдость поверхности канавок и наплывов на 10-25 % выше твёрдости исходной поверхности. Остаточное напряжение в 1,3-1,7 раза больше, чем при обкатывании без вибрации на тех же режимах.
Для получения низменного рисунка системы каналов необходимо выдерживать постоянным отношением N/n и иметь неизменный диаметр детали. Одной из основных характеристик виброобкатанных поверхностей является степень перекрытия Rn выдавливаемыми канавками исходной обрабатываемой поверхности.
Величина Rn определяет путь, проходимый инструментом в единицу времени [4].
3.5. Обработка дробью.
Методы обработки подразделяются на две группы — обработка сухой дробью и обработка дробью с СОЖ. При дробеструйном (ДУ), пневмодинамическом (ПДУ) и дробелитном (ДМУ) упрочнении детали обрабатывают сухой дробью, эти методы называют дробеударными. Существуют следующие разновидности гидроударной обработки гидробеструйная (ГДУ) гидробелитная (ГДМУ), упрочнение микро шариками.
Каждый метод характеризует несколько параметров:
- скорость сообщаемая дроби ( 1-1ООм/с);
- характеристика дроби: её материал (чугун, сталь, стекло), метод изготовления
(литые или рубленные из проволоки шарики для подшипников), форма неправильная (литая дробь) и правильная (шарики);
- кинетическая энергия дроби, зависящая от скорости полёта и диаметра дроби;
- количество дроби одновременно участвующей в наклёпе поверхности детали.
Жидкие среды удаляют продукты изнашивания с поверхности обрабатываемых деталей и рабочих тел, смачивают и охлаждают их. В большинстве случаев рабочая среда представляет собой водный раствор щелочей, кислот и солей с химическими добавками. В частности кислота стеариновая техническая ГОСТ 94 19-78, кислота амиловая и др.
При обработке дробью шероховатость обрабатываемой поверхности повышается незначительно, а в некоторых методах и режимах обработки возможно и уменьшение шероховатости.
При дробеструйном упрочнении шлифованных поверхностей цементированных и закалённых деталей параметр шероховатости повышается в среднем на 1-2 мкм, при упрочнении деталей из улучшенной стали, из титановых и алюминиевых сплавов параметр шероховатости повышается на 2,5-5 мкм, во многих случаях происходит активный перенос частиц дроби на поверхность деталей, что снижает их коррозионную стойкость, режим упрочнения характеризуется значительной нестабильностью. Коме того, установки ДУ имеют ряд эксплуатационных недостатков, связанных с быстрым изнашиванием сопел и др.. Основные преимущества ГДУ по сравнению с дробеструйным следующие:
- остаточные напряжения только сжимающие, максимальные значения на некоторой глубине, сравнительно низкий параметр шероховатости (Rа 1,25-О,1бмкм) сохраняется, высокий (Ra 1,25-1,2 мкм) может снижаться до 12,5-1,2 мкм:
- микрогеометрия улучшается,
- исключён перенос на обрабатываемую поверхность материала рабочих тел в связи со снижением температуры в зоне контакта.
Однако установки ГДУ сложнее, дороже и требуют более высоких затрат при эксплуатации.
Наибольшее отличие в изменении свойств проявляется при ДМУ (дробелитное упрочнение). Высокая интенсивность пластической деформации обеспечивает при ДМУ более высокую степень и глубину упрочнения. Максимальная микро твёрдость наблюдается при времени наклёпа равным 4 минутам
По сравнению с исходной твёрдость увеличивается на 25 % и достигает ≈10Гпа [4].
0 комментариев