Введение

Стек протоколов TCP/IP тесно связан с сетью Internet, ее историей и современностью. Создан он был в 1969 году, когда для сети ARPANET понадобился ряд стандартов для объединения в единую сеть компьютеров с различными архитектурами и операционными системами. На базе этих стандартов и был разработан набор протоколов, получивших название TCP/IP. Вместе с ростом Internet протокол TCP/IP завоевывал позиции и в других сетях. На сегодняшний день этот сетевой протокол используется как для связи компьютеров всемирной сети, так и в подавляющем большинстве корпоративных сетей. В наши дни используется версия протокола IP, известная как IPv4. В статье мы рассмотрим стандартную схему адресации и более новые методы рационального использования адресного пространства, введенные в результате обнаруженных недостатков в реализации протокола IP.

1. Адресация протокола IP

Согласно спецификации протокола, каждому узлу, подсоединенному к IP-сети, присваивается уникальный номер. Узел может представлять собой компьютер, маршрутизатор, межсетевой экран и др. Если один узел имеет несколько физических подключений к сети, то каждому подключению должен быть присвоен свой уникальный номер. Этот номер, или по-другому IP-адрес, имеет длину в четыре октета, и состоит из двух частей. Первая часть определяет сеть, к которой принадлежит узел, а вторая -- уникальный адрес самого узла внутри сети. В классической реализации протокола первую часть адреса называли "сетевым префиксом", поскольку она однозначно определяла сеть. Однако в современной реализации это уже не так и сеть идентифицируют другим образом, ниже речь пойдет о классической адресной схеме протокола ip.

Изначально все адресное пространство разделили на пять классов: A, B, C, D и Е. Такая схема получила название "классовой". Каждый класс однозначно идентифицировался первыми битами левого байта адреса. Сами же классы отличались размерами сетевой и узловой частей. Зная класс адреса, вы могли определить границу между его сетевой и узловой частями. Кроме того, такая схема позволяла при маршрутизации не передавать вместе с пакетом информацию о длине сетевой части IP-адреса.

Таблица 1-Иеархическая схема протоколов IP

Класс А
Номер бита 0 8 16 24 31
Адрес 0....... ........ ........ ........
Сетевая часть
Класс В
Номер бита 0 8 16 24 31
Адрес 10...... ........ ........ ........
Сетевая часть
Класс С
Номер бита 0 8 16 24 31
Адрес 110..... ........ ........ ........
Сетевая часть
Класс D
Номер бита 0 8 16 24 31
Адрес 1110.... ........ ........ ........
Класс E
Номер бита 0 8 16 24 31
Адрес 1111.... ........ ........ ........

Класс А ориентирован на очень большие сети. Все адреса, принадлежащие этому классу, имеют 8-битный сетевой префикс, на что указывает первый бит левого байта адреса установленный в нуль. Соответственно, на идентификацию узла отведено 24 бита и каждая сеть "восьмерка" может содержать до 224-2 узлов. Два адреса необходимо отнять, поскольку адреса, содержащие в правом октете все нули (идентифицирует указанную сеть) и все единицы (широковещательный адрес) используются в служебных целях и не могут быть присвоены узлам. Самих же сетей "восьмерок" может быть 27-2. Снова мы вычитаем двойку, но это уже две служебных сети: 127/8 и 0/8 (по-старому: 127.0.0.0 и 0.0.0.0). Наконец, можно заметить, что класс А содержит всего 27 * 224 = 231 адресов, или половину всех возможных IP-адресов. Класс В предназначен для сетей большого и среднего размеров. Адреса этого класса идентифицируются двумя старшими битами, равными соответственно 1 и 0. Сетевой префикс класса состоит из шестнадцати бит или первых двух октетов адреса. Поскольку два первых бита сетевого префикса заняты определяющим класс ключом, то можно задать лишь 214 различных сетей. Узлов же в каждой сети можно определить до 216-2. В некоторых источниках, для определения количества возможных сетей используется формула 2х-2 для всех классов, а не только для А. Это связано с определенными причинами, которые более детально будут изложены ниже. На сегодняшний день нет никакой необходимости уменьшать количество возможных сетей на две. Проведя вычисления, аналогичные приведенным для класса А, мы увидим, что класс В занимает четверть адресного пространства протокола IPНаконец, самый употребляемый класс сетей – класс С – имеет 24 битный сетевой префикс, определяется старшими битами, установленными в 110, и может идентифицировать до 221 сетей. Соответственно, класс позволяет адресовать до 28-2 узлов. Занимает восьмую часть адресного пространства протокола TCP/IP. Последние два класса занимают оставшуюся восьмую часть в адресном пространстве и предназначены для служебного (класс D) и экспериментального (класс Е) использования. Для класса D старшие четыре бита адреса установлены в 1110, для класса Е -- 1111. Сегодня класс D используется для групповой передачи информации. Поскольку длинные последовательности из единиц и нулей трудно запомнить, IP адреса обычно записывают в десятичной форме. Для этого каждый октет адреса представляется в виде десятичного числа. Между собой октеты отделяются точкой. Иногда октеты обозначаются как w.x.y.z и называются "z-октет", "y-октет", "x-октет" и "w-октет". Представление IP-адреса в виде четырех десятичных чисел разделенных точками и называется "точечно-десятичная нотация".

Октет W X Y Z
Номер бита 0 8 16 24 31
Адрес 11011100 11010111 00001110 00010110
220 215 14 22
Точечно- десятичный формат 220.215.14.22

 Рисунок 1 - IP в точечно-десятичной нотации

На рис. 1 показано, как IP-адрес представляется в точечно-десятичной нотации.

Подытожим информацию о классах сетей в таблице:

Таблица 2- Классовая сеть

Класс Количество сетей Количество узлов Десятичный диапазон
A 27 – 2 (126) 224 – 2 (2 147 483 648) 1.ххх.ххх.ххх 126.ххх.ххх.ххх
B 214 (16 384) 216 – 2 (65 534) 128.0.ххх.ххх 191.255.ххх.ххх
C 221 (2 097 152) 28 – 2 (254) 192.0.0.ххх 223.255.255.ххх
D - - 224.0.0.ххх 239.255.255.ххх
E - - 240.0.0.ххх 254.255.255.ххх

 


Информация о работе «Протоколы TCP/IP»
Раздел: Информатика, программирование
Количество знаков с пробелами: 49969
Количество таблиц: 15
Количество изображений: 3

Похожие работы

Скачать
52868
2
1

... .   1. Персональные компьютеры в cетях TCP/IP 1.1 Иерархия протоколов TCP/IP Протоколы TCP/IP широко применяются во всем мире для объединения компьютеров в сеть Internet. Архитектура протоколов TCP/IP предназначена для объединенной сети, состоящей из соединенных друг с другом шлюзами отдельных разнородных компьютерных подсетей. Иерархию управления в TCP/IP – сетях обычно представляют в виде ...

Скачать
27320
2
2

... деление его функций. Однако модель TCP/IP разрабатывалась значительно позже самого комплекса протоколов, поэтому она ни как не могла быть взята за образец при проектировании протоколов. Семейство протоколов TCP/IP Семейство протоколов IP состоит из нескольких протоколов, часто обозначаемых общим термином “TCP/IP”: o  IP – протокол межсетевого уровня; o  TCP – протокол межхостового уровня, ...

Скачать
9559
0
1

... ISO/OSI, то, хотя он также имеет многоуровневую структуру, соответствие уровней стека TCP/IP уровням модели OSI достаточно условно. Структура протоколов TCP/IP приведена на рисунке 2.1. Протоколы TCP/IP делятся на 4 уровня. Рис. 2.1. Стек TCP/IP Самый нижний (уровень IV) соответствует физическому и канальному уровням модели OSI. Этот уровень в протоколах TCP/IP не регламентируется, но ...

Скачать
46052
1
7

... (демультиплексирует) в соответствии с портами назначения. На рис. 5.2 показан поток данных, следующий сквозь сетевой уровень и модуль UDP к прикладным программам. Рис..2. Поток данных через модуль UDP Что такое транспортный протокол? Транспортный протокол (Transport Control Protocol, TCP) наряду с протоколом IP — один из наиболее распространенных в Интернет. Так же, как и UDP, TCP ...

0 комментариев


Наверх