2. Организация подсетей
Очень редко в локальную вычислительную сеть входит более 100-200 узлов: даже если взять сеть с большим количеством узлов, многие сетевые среды накладывают ограничения, например, в 1024 узла. Исходя из этого, целесообразность использования сетей класса А и В весьма сомнительна. Да и использование класса С для сетей, состоящих из 20-30 узлов, тоже является расточительством. Для решения этих проблем в двухуровневую иерархию IP-адресов (сеть -- узел) была введена новая составляющая -- подсеть. Идея заключается в "заимствовании" нескольких битов из узловой части адреса для определения подсети. Полный префикс сети, состоящий из сетевого префикса и номера подсети, получил название расширенного сетевого префикса. Двоичное число, и его десятичный эквивалент, содержащее единицы в разрядах, относящихся к расширенному сетевому префиксу, а в остальных разрядах -- нули, назвали маской подсети. Но маску в десятичном представлении удобно использовать лишь тогда, когда расширенный сетевой префикс заканчивается на границе октетов, в других случаях ее расшифровать сложнее. Допустим, что мы хотели бы для подсети использовать не 8 бит, а десять. Тогда в последнем (z-ом) октете мы имели бы не нули, а число 11000000. В десятичном представлении получаем 255.255.255.192. Очевидно, что такое представление не очень удобно. В наше время чаще используют обозначение вида "/xx", где хх -- количество бит в расширенном сетевом префиксе. Таким образом, вместо указания: "144.144.19.22 с маской 255.255.255.192", мы можем записать: 144.144.19.22/26. Как видно, такое представление более компактно и понятно.
2.1 Маска под сети переменной длины (Variable Length Subnet Mask)
Однако вскоре стало ясно, что подсети, несмотря на все их достоинства, обладают и недостатками. Так, определив однажды маску подсети, приходится использовать подсети фиксированных размеров. Скажем, у нас есть сеть 144.144.0.0/16 с расширенным префиксом /23.
Таблица 3 - С расширенный префикс
Сетевой префикс | Подсеть | Узел | |||
144.144.0.0/23 | <--> | 10010000 | 10010000 | 0000000 | 0 00000000 |
Расширенный сетевой префикс | |||||
Такая схема позволяет создать 27 подсетей размером в 29 узлов каждая. Это подходит к случаю, когда есть много подсетей с большим количеством узлов. Но если среди этих сетей есть такие, количество узлов в которых находится в пределах ста, то в каждой их них будет пропадать около 400 адресов. Решение состоит в том, что бы для одной сети указывать более одного расширенного сетевого префикса. О такой сети говорят, что это сеть с маской подсети переменной длины (VLSM). Действительно, если для сети 144.144.0.0/16 использовать расширенный сетевой префикс /25, то это больше бы подходило сетям размерами около ста узлов. Если допустить использование обеих масок, то это бы значительно увеличило гибкость применения подсетей. Общая схема разбиения сети на подсети с масками переменной длины такова: сеть делится на подсети максимально необходимого размера. Затем некоторые подсети делятся на более мелкие, и рекурсивно далее, до тех пор, пока это необходимо. Кроме того, технология VLSM, путем скрытия части подсетей, позволяет уменьшить объем данных, передаваемых маршрутизаторами. Так, если сеть 12/8 конфигурируется с расширенным сетевым префиксом /16, после чего сети 12.1/16 и 12.2/16 разбиваются на подсети /20, то маршрутизатору в сети 12.1 незачем знать о подсетях 12.2 с префиксом /20, ему достаточно знать маршрут на сеть 12.1/16.
2.2 Протокол межсетевого взаимодействия IP. Формат IP дейтограмм
Перенос между сетями различных типов адресной информации в унифицированной форме, сборка и разборка пакетов при передаче их между сетями с различным максимальным значением длины пакета.
Таблица 4 - Формат IP дейтаграммы.
версия | длина | тип сервиса | общая длина пакета в байтах | ||
Идентификация (для всех фрагментов одинаковое) | флаги (3бита) | Смещение фрагмента | |||
время жизни | протокол | FCS заголовка | |||
IP-адрес отправителя | |||||
IP-адрес получателя | |||||
Опции IP (если есть) | заполнение (до 32 бит) | ||||
Данные | |||||
Версия (IPv4), длина заголовка в 32 бит. словах, тип сервиса (для интеллектуальных маршрутизаторов, PPPDTRхх, P - приоритет (для будущего), D,T,R - запрашиваются мин. задержки, макс. пропускная способность, макс.надежность).Флаги Do not Fragment - DF, More Fragments - MF - еще фрагменты.Time to live - в секундах сколько жить пакету(перегрузки и кольца, снятие 1 при любом переходе). Опции IP (если есть) - для тестирования или отладки сети (напр. запись маршрута или обязательное прохождение по маршруту).
Рисунок 5 - Дейтаграмма UDP
Протокол доставки пользовательских дейтаграмм UDP. Формат сообщений UDP. Протокол надежной доставки сообщений TCP (Transmission Control Protocol). Порты и установление TCP-соединений.Протокол доставки пользовательских дейтаграмм UDP. Без гарантий доставки, поэтому его пакеты могут быть потеряны, продублированы или прийти не в том порядке, главное - быстрота. Мультиплексирование и демультиплексирование прикладных протоколов с помощью протокола UDP.
Формат сообщений UDP.
UDP source port - номер порта процесса-отправителя,
UDP destination port - номер порта процесса-получателя,
UDP message length - длина UDP-пакета в байтах,
UDP checksum - контрольная сумма UDP-пакета.
(!) Можно не заполнять поля 1 и 4.
Протокол надежной доставки сообщений TCP (Transmission Control Protocol).
Сверху - неструктурированный поток байт, вниз - сегменты (осн. единица TCP). Договор о макс. длине сегмента (не должен превышать поле данных IP дейтаграммы).
Порты и установление TCP-соединений.
Установление логического соединения. Адрес каждой оконечной точки включает IP адрес и номер порта TCP. Одна оконечная точка может участвовать в нескольких соединениях.
... . 1. Персональные компьютеры в cетях TCP/IP 1.1 Иерархия протоколов TCP/IP Протоколы TCP/IP широко применяются во всем мире для объединения компьютеров в сеть Internet. Архитектура протоколов TCP/IP предназначена для объединенной сети, состоящей из соединенных друг с другом шлюзами отдельных разнородных компьютерных подсетей. Иерархию управления в TCP/IP – сетях обычно представляют в виде ...
... деление его функций. Однако модель TCP/IP разрабатывалась значительно позже самого комплекса протоколов, поэтому она ни как не могла быть взята за образец при проектировании протоколов. Семейство протоколов TCP/IP Семейство протоколов IP состоит из нескольких протоколов, часто обозначаемых общим термином “TCP/IP”: o IP – протокол межсетевого уровня; o TCP – протокол межхостового уровня, ...
... ISO/OSI, то, хотя он также имеет многоуровневую структуру, соответствие уровней стека TCP/IP уровням модели OSI достаточно условно. Структура протоколов TCP/IP приведена на рисунке 2.1. Протоколы TCP/IP делятся на 4 уровня. Рис. 2.1. Стек TCP/IP Самый нижний (уровень IV) соответствует физическому и канальному уровням модели OSI. Этот уровень в протоколах TCP/IP не регламентируется, но ...
... (демультиплексирует) в соответствии с портами назначения. На рис. 5.2 показан поток данных, следующий сквозь сетевой уровень и модуль UDP к прикладным программам. Рис..2. Поток данных через модуль UDP Что такое транспортный протокол? Транспортный протокол (Transport Control Protocol, TCP) наряду с протоколом IP — один из наиболее распространенных в Интернет. Так же, как и UDP, TCP ...
0 комментариев