1. волновое уравнение.
В предыдущем параграфе мы рассмотрели математическую сторону волнового уравнения. В этом же параграфе я хотел бы на конкретном примере рассмотреть как работает тот математический аппарат.
Рисунок 4 |
Применим второй закон Ньютона и закон сложения сил к движению куска стержня, заключенного между двумя плоскостями x и х+х. Масса этого куска равна р0S0х, где р0 иS0– соответственно плотность и сечение в отсутствие деформации. Пусть – смещение центра тяжести рассматриваемого куска. Тогда
слева стоит произведение массы куска на ускорение д2/дt2 его центра тяжести, справа – результирующая внешних сил, действующая на кусок.
Разделим уравнение на S0:
(2.7)
Перейдя к пределу при , получим уравнение
(2.8)
справедливое в каждой точке стержня. Оно указывает, что ускорение данной точки пропорционально частной производной напряжения по ж в этой точке.
Подставляя в (2.8) соотношение (2.7), получим:
(2.9)
Вспомнив теперь формулу , содержащую определение деформации, и подставив ее в (2.9), получаем:
(2.10)
Это—волновое уравнение. Оно указывает, что смещение распространяется но стержню в виде волн
(2.11)
или образует суперпозицию таких волн. Скорость распространения этих волн (скорость звука в стержне)
(2.12)
(мы опускаем для краткости индекс 0 у р). Эта скорость тем больше, чем жестче и чем легче материал. Формула (2.12)—одна из основных формул акустики.
Наряду со смещением нас интересуют скорость v = , с которой
.движутся отдельные плоскости х = const (не смешивать с u), деформация и напряжение . Дифференцируя (2.11) по t и но x, получаем:
v=uf’(x ut) (2.13a)
=f'(x ut), (2.13б)
=Ef’ (x ut). (2.13в)
Таким образом, смещение, скорость, деформация и напряжение распространяются в виде связанных определенным образом между собой недеформирующихся волн, имеющих одну и ту же скорость и одинаковое направление распространения.
На рис. 5 показан пример «моментальных снимков», относящихся к одному и тому же моменту времени, смещения, деформации и скорости в одной и той же упругой волне. Там, где смещение имеет максимум или минимум, деформация и скорость равны нулю, так как они обе пропорциональны производной f'{x ut). Физическая интерпретация здесь очевидна: около максимума или минимума смещения соседние (бесконечно близкие) точки одинаково смещены и, следовательно, нет ни растяжения, ни сжатия; в тот момент, когда смещение достигает максимума (минимума), его возрастание сменяется убыванием (или наоборот).
Сравнивая формулы (2.13а), (2.13в) и принимая во внимание (2.12) мы видим, что
(2.14)
где
(2.15)
есть величина, не зависящая от вида функции f и целиком определяемая свойствами материала. Эта величина называется удельным акустическим сопротивлением материала. Она является, как мы видим, наряду с u его важнейшей акустической характеристикой. Название величины связано с формальной аналогией между уравнениями (2.14) и законом Ома (р аналогично разности потенциалов, v - силе тока).
§ 2. Упругие волны в газах и жидкостях
... в пространстве. Утверждение о существовании электромагнитных волн является непосредственным следствием решения системы уравнений Максвелла. Согласно этой теории следует, что переменное электромагнитное поле распространяется в пространстве в виде волн, фазовая скорость которых равна: где - скорость света в вакууме, , - электрическая и магнитная постоянные, , - соответственно диэлектрическая ...
... собой волновое уравнение, написанное для случая, когда ξ не зависит от у и z. Сопоставление уравнений (4.7) и (5.6) дает, что υ = Таким образом, фазовая скорость продольных упругих волн равна корню квадратному из модуля Юнга, деленного на плотность среды. Аналогичные вычисления для поперечных волн приводят к выражению υ = ...
... волны на продольную и поперечную части и приведены формулы для граничных условий. 3. Поставлена и решена задача о прохождении плоской упругой продольной волны через упругий однородный изотропный цилиндрический слой и приведены диаграммы направленности рассеяния продольной волны по амплитуде. Листинг программы представлен в ПРИЛОЖЕНИИ 1. Расчетные данные взяты из таблицы 1. 4. В качестве ...
... W(x,t+) U X UЕ=Ux/cos т.е. т.к. cos<1,. то фазовая скорость может превышать скорости света Элементы векторного анализа Необходимо уметь анализировать не только скалярные, но и векторные функции точки.Скалярные функции: температура неравномерно нагретого тела, плотность неоднородного тела и т. д.Векторные функции: ...
0 комментариев