4 Голографические оптические элементы.

Голографические (или голограммные) оптические элементы (ГОЭ) представляют собой голограммы, на которых записаны волновые фронты специальной формы. Голографические оптические элементы можно сконструировать для преобразования любого входного волнового фронта в любой другой выходной фронт независимо от параметров материала подложки, например от кривизны или показателя преломления. С их помощью возможна коррекция аберрации оптических систем, в таком случае ГОЭ выступают как составные элементы сложных оптических приборов. ГОЭ используют и как самостоятельные оптические элементы в качестве линз, зеркал, дифракционных решеток, мультипликаторов и др.

Далее рассмотрим некоторые случаи применения ГОЭ в оптике и оптическом приборостроении.

4.1. Голограмма-линза.

Голограмму можно рассматривать не только как результат записи волнового поля, но также как изображающий оптический элемент. Известно, что свойства линзы проявляют зонные пластинки (решетки). Под этим термином обычно понимают зонную пластинку Френеля, состоящую из чередующихся светлых и темных колец, которые ограничены окружностями с радиусами ρп = √nλzf , где п - целое число, λ - длина волны света с плоским волновым фронтом, которая, падая на пластину, фокусируется на расстояние zf от нее.

Если nλ=zf то совокупность окружностей, которым соответствуют четные п, можно рассматривать как зонную пластину, имеющую двойное фокусное расстояние 2zf, совокупность окружностей с п, кратным 3, - как пластинку с утроенным фокусным расстоянием и т.д. Такая пластинка Френеля с прямоугольным радиальным распределением почернения может выполнять функцию изображающего оптического элемента. Ее недостаток - возникновение большого числа изображений, расположенных на оси, совпадающей с главным лучом пучка нулевого дифракционного порядка.

Зонную пластинку с косинусоидальным распределением почернения можно получить в виде голограммы, на которой записан результат интерференции плоской и сферической волн по схеме Габора при условии линейности процесса регистрации. В этом случае образуются только ±1-с дифракционные порядки, т.е. только два фокуса. В случае схемы Лейта оба изображения пространственно разделены между собой и с пучком нулевого порядка.

При освещении голограммы-линзы плоской волной возникают две сферические волны: сходящаяся и расходящаяся. Голографическая линза одновременно выполняет функции двух линз - выпуклой (положительной) и вогнутой (отрицательной). Направления распространения образованных сферических волн зависят от направления восстанавливающей плоской волны.

Схема получения голографической линзы приведена на рис. 8.10. С помощью линзы Л и микродиафрагмы Д создается точечный источник сферической волны. На заданном расстоянии zs от точечного источника устанавливают фотопластинку Ф, освещаемую также опорной плоской волной Р. Интерференционная картина регистрируется на фотопластине с последующей фотохимической обработкой, предусматривающей, как правило, отбеливание. В результате ДЭ полученной фазовой голограммы достаточно высока (до нескольких десятков процентов).

Рис. 8.10. Схема получения голографической линзы (а) и построения изображения (б)
Рис. Схема получения голографической линзы (а) и построения изображения (б).

При построении изображения предмета Т, помещенного в восстанавливающий пучок С, возникают основное изображение Iр - действительное и вторичное Ik - мнимое. Если повернуть голограмму на 180°, то характер изображений изменится.

Голографическая линза - это оптический элемент с двумя фокусными расстояниями: для основного (fp) и сопряженного (fk) изображений. Положения двух изображений связаны формулой l/zp + l/zk = 2/zT.

Как видим, это выражение не зависит от положения источника сферической волны при получении и определяется только положением предмета Т относительно голографической линзы.

4.2. Голографические дифракционные решетки.

Наиболее распространенный вид ГОЭ - именно голографические дифракционные решетки (ДР), представляющие собой зарегистрированную на светочувствительном материале картину интерференции двух световых пучков. Параметры голографических решеток можно изменять в широком диапазоне с помощью схемы записи и формы поверхности, на которой регистрируется решетка.

Так, при изготовлении голографической решетки ей можно придавать любые фокусирующие свойства, например, получать плоские голограммы, аналогичные по своему действию вогнутой решетке, но лишенные астигматизма последней. Голографический метод позволяет формировать ДР с любым распределением эффективности по дифракционным порядкам. Для этой цели может быть использована оптическая схема пространственной фильтрации.

В случае падения на светочувствительный слой двух параллельных пучков под углами φ друг к другу расстояние между интерференционными полосами определяется как d = λ/2sin (φ/2). При увеличении угла φ и уменьшении длины волны λ расстояние между штрихами уменьшается. В пределе при φ→π d→λ/2. Есть сообщения о промышленном изготовлении ДР с пространственной частотой до 6000 линий/мм.

Преимущество голографического метода еще и в том, что решетки могут быть изготовлены весьма больших размеров (до 600 × 400 мм). Дифракционные решетки превосходят обычные, нарезанные механическим способом, по таким параметрам, как максимальная пространственная частота и размеры, отношение сигнал/шум, возможность коррекции аберрации и др.

На практике наиболее пригодны голографические ДР на БХЖ, что обусловлено свойствами последней (высокая ДЭ, низкие зернистость, потери и т.д.). Голографические ДР используют в лазерной технике. Будучи введены в лазерный резонатор, они служат хорошими селекторами длин волн излучения. Две скрещенные голографические ДР делят световой пучок на несколько равных по интенсивности пучков. Таким образом, могут быть созданы мультиплицирующие элементы (размножители) с эффективностью до 85%. Такие мультипликаторы обеспечивают любой шаг мультипликации от единиц до десятков миллиметров.


Информация о работе «Голография и ее применение»
Раздел: Физика
Количество знаков с пробелами: 54282
Количество таблиц: 0
Количество изображений: 21

Похожие работы

Скачать
24974
0
0

... проектируется исходя из решаемых задач и технико-экономических ограничений, а затем полученные результаты могут быть отнесены к конкретному классу. Практическая эффективность этой классификации невелика. 2. Общие принципы построения и применения ИИС Создаваемая ИИС должна обеспечивать достижение поставленных перед ней целей. Эти цели могут быть достигнуты различными способами. Поэтому должны ...

Скачать
54126
0
1

... иной, двухступенчатый метод. В отличие от обычной фотографии изображения, которые получаются при восстановлении записанного на голограмме, полностью неотличимы от изображений реального предмета. Голография позволяет воспроизвести в пространстве действительную картину электромагнитных волн, т.е. волновую картину предмета тогда, когда .самого предмета уже нет. 2. Голографирование. Восстановление ...

Скачать
60573
1
0

... -лазер мог бы стать важным элементом энергетики будущего. В частности, работая на космической орбите, он мог бы передавать энергию на Землю в виде мощного лазерного луча. 2. ПРИМЕНЕНИЕ ЛАЗЕРОВ   2.1 ПРИМЕНЕНИЕ ЛАЗЕРНОГО ЛУЧА В ПРОМЫШЛЕННОСТИ И ТЕХНИКЕ   Оптические квантовые генераторы и их излучение нашли применение во многих отраслях промышленности. Так, например, в индустрии наблюдается ...

Скачать
40610
0
6

... 1024 голограммы, каждая из которых занимает площадь в один квадратный миллиметр. Одна голограмма— страница книги, одна пластинка — целая большая книга. Многообещающим является применение голографии при распознавании образов и символов, что позволит создать читающие автоматы, обладающие большой надежностью. Голографические устройства с использованием звуковых радиоволн совместно со световыми ...

0 комментариев


Наверх