4.5 Голографический микроскоп.

Двухступенчатый метод голографии впервые позволил создать микроскоп, регистрирующий не только амплитуду, но и фазу световой волны, рассеянной объектом. Появление такого микроскопа открыло новые возможности исследования микрообъектов, недостижимые известными методами классической микроскопии.

В безлинзовом микроскопе достичь увеличения можно, применяя разные длины волн или разные радиусы кривизны на стадиях получения голограмм и восстановления волнового фронта.

Схема голографического микроскопа с прямой голографической записью волновых фронтов приведена на рис. Объект 2 помещается в расходящийся лазерный пучок. Полученная дифракционная картина фиксируется вместе с когерентным фоном на фотопластинке на расстоянии z1 от объекта.

Рис. 8.16. Запись и восстановление увеличенного изображения в голографическом микроскопе с прямой записью
Рис. Запись и восстановление увеличенного изображения в голографическом микроскопе с прямой записью.

Увеличение восстановленного изображения определяется выражением

M = [1 ± (z1λ1/z3λ2) - (z1/z2)]-1,

где λ1, λ2 - длины волн источников излучения при записи и восстановлении; z1 - расстояние от исследуемого объекта до плоскости голограммы; z2, z3 - расстояния от точечных диафрагм до плоскости голограммы соответственно в схемах записи и восстановления. Знак "-" относится к действительному изображению, знак "+" - к мнимому.

Если применяются коллимированные опорный и восстанавливающий пучки (z2 = z3 = ∞), то микроскоп работает с единичным увеличением. При использовании коллимированного пучка только на стадии восстановления (z3 = ∞) увеличение микроскопа не зависит от соотношения длин волн при записи и восстановлении и обусловлено только первой стадией процесса.

При z2 = ∞ увеличение M = [1 ± (z1λ1/z3λ2)]-1 и достигает больших значений для действительного изображения при z1λ1 = z3λ2. При z1 = z3 увеличение M = [1 ± (λ1/λ2)]-1 и зависит только от соотношения длин волн при записи и восстановлении. Следовательно,

увеличение безлинзового голографического микроскопа определяется соотношением длин волн и кривизной волновых фронтов, используемых при записи и восстановлении, и может легко регулироваться. Однако при этом получаемые изображения сопровождаются значительными аберрациями, что необходимо учитывать в безлинзовой голографической микроскопии. И именно здесь целесообразно применять методы согласованной фильтрации.

Несомненными преимуществами обладает голографический микроскоп с предварительным увеличением (рис.). Полупрозрачный объект 5 помещают на предметном стекле и освещают расположенным вплотную к нему конденсором 4 светом лазера 1. Объектив микроскопа 6 создает увеличенное действительное изображение объекта, регистрируемое вместе с опорным пучком на голограмме 8, помещаемой между объективом и окуляром 9.

Рис. 8.17. Схема голографического микроскопа с предварительным увеличением
Рис. Схема голографического микроскопа с предварительным увеличением.

Объектив и фокусирующую линзу 10 подбирают так, чтобы обеспечить максимальное совпадение кривизны создаваемых ими волновых фронтов при заданном угле падения на голограмму для уменьшения пространственной частоты регистрируемой интерференционной структуры. Угол между опорными и предметными пучками выбирают достаточно малым из тех же соображений. Восстановленное изображение изучается через окуляр микроскопа, который можно перестраивать по глубине и перемещать по полю зарегистрированного изображения. Подобная схема микроскопа обеспечивает достижение разрешения около 1 мкм.

Можно сравнить две схемы голографического микроскопа. Недостатками схемы прямой регистрации можно назвать высокие требования к разрешающей способности регистрирующей среды и сильное влияние пятнистой структуры на качество изображения. В голографической схеме с использованием микрообъектива для создания увеличенного изображения предмета требования к разрешающей способности минимальны, но поле зрения и глубина регистрируемого пространства определяются свойствами применяемого микрообъектива и весьма малы.

3.Голографические ВЗУ.

1. Голографические запоминающие устройства.

Способность голограмм Фурье хранить информацию успешно реализуется в голографических запоминающих устройствах (ГЗУ). При построении последних стандартным стало использование принципа страничной записи информации в виде матрицы голограмм с их адресацией лучом лазера.

Преимущества оптической памяти состоят в большой емкости (и, соответственно, высокой плотности хранения информации) и высоком быстродействии, возможности параллельной обработки информации, высокой надежности хранения, быстром доступе к массивам информации, отсутствии энергопотребления в статическом состоянии, а главное - большой помехоустойчивости голограмм.

Все ГЗУ можно разделить на следующие основные типы:

- оперативные ГЗУ (на двумерных голограммах и трехмерных с трехкоординатной адресацией);

84

- массовые ГЗУ;

- ГЗУ постоянного типа;

- архивные ГЗУ.

Архивные ГЗУ предназначены для записи и хранения документов без предварительного кодирования. Запись позволяет получить уменьшение документов в 100-200 раз и записать страницу формата 210 × 297 мм в виде фурье-голограммы размером 1-2 мм. На одном носителе записывается около 104 голограмм, но можно довести емкость носителя и до 107. Такие ГЗУ обеспечивают длительное хранение (5-10 лет) без перезаписи, что обусловлено устойчивостью к дефектам носителя, пыли и т.д., а также независимостью от действия внешних электромагнитных и радиационных воздействий. Подобной системой могут оснащаться непосредственно читальные залы крупных библиотек.

Массовые ГЗУ сверхбольшой емкости можно получить, если нанести регистрирующую среду на движущийся носитель типа диска или ленты. В качестве регистрирующей среды для таких систем используют магнитооптические пленки. В ГЗУ с движущимся носителем может быть достигнута высокая плотность записи (порядка 105 бит/мм2), близкая к теоретическому пределу, что на два порядка превышает плотность хранения, достигнутого в ЗУ на магнитных носителях. Емкость таких ГЗУ можно довести до 1013 бит. Чтобы избежать размазывания из-за движения носителя, запись голограмм производится коротким световым импульсом.

Голографические запоминающие устройства постоянного типа (ГЗПУ) не требуют реверсивного регистрирующего материала, обладающего свойством стирания. Наиболее высокое быстродействие среды подобных систем имеют ГПЗУ со страничной организацией и адресуемым лучом. Запись голограмм на носитель информации.

2.Носители информации для голографических ЗУ.


Информация о работе «Голография и ее применение»
Раздел: Физика
Количество знаков с пробелами: 54282
Количество таблиц: 0
Количество изображений: 21

Похожие работы

Скачать
24974
0
0

... проектируется исходя из решаемых задач и технико-экономических ограничений, а затем полученные результаты могут быть отнесены к конкретному классу. Практическая эффективность этой классификации невелика. 2. Общие принципы построения и применения ИИС Создаваемая ИИС должна обеспечивать достижение поставленных перед ней целей. Эти цели могут быть достигнуты различными способами. Поэтому должны ...

Скачать
54126
0
1

... иной, двухступенчатый метод. В отличие от обычной фотографии изображения, которые получаются при восстановлении записанного на голограмме, полностью неотличимы от изображений реального предмета. Голография позволяет воспроизвести в пространстве действительную картину электромагнитных волн, т.е. волновую картину предмета тогда, когда .самого предмета уже нет. 2. Голографирование. Восстановление ...

Скачать
60573
1
0

... -лазер мог бы стать важным элементом энергетики будущего. В частности, работая на космической орбите, он мог бы передавать энергию на Землю в виде мощного лазерного луча. 2. ПРИМЕНЕНИЕ ЛАЗЕРОВ   2.1 ПРИМЕНЕНИЕ ЛАЗЕРНОГО ЛУЧА В ПРОМЫШЛЕННОСТИ И ТЕХНИКЕ   Оптические квантовые генераторы и их излучение нашли применение во многих отраслях промышленности. Так, например, в индустрии наблюдается ...

Скачать
40610
0
6

... 1024 голограммы, каждая из которых занимает площадь в один квадратный миллиметр. Одна голограмма— страница книги, одна пластинка — целая большая книга. Многообещающим является применение голографии при распознавании образов и символов, что позволит создать читающие автоматы, обладающие большой надежностью. Голографические устройства с использованием звуковых радиоволн совместно со световыми ...

0 комментариев


Наверх