Внутренние силы, как и в случае произвольной системы материальных точек, не- влияют на движение центра масс и не могут изменить момент импульса тела

23459
знаков
55
таблиц
11
изображений

1. Внутренние силы, как и в случае произвольной системы материальных точек, не- влияют на движение центра масс и не могут изменить момент импульса тела.

2. Точку приложения внешней силы можно произвольно перемещать вдоль линии, по которой действует сила. Это следует из того, что в модели абсолютно твердого тела локальные деформации, возникающие в области приложения силы, в расчет не принимаются. Указанный перенос не повлияет и на момент силы относительно какой бы то ни было точки, так как плечо силы при этом не изменится.

Векторы L и M в уравнении (3.2), как правило, рассматриваются относительно некоторой неподвижной в лабораторной системе XYZ точки. Во многих задачах L и M удобно рассматривать относительно движущегося центра масс тела. В этом случае уравнение моментов имеет вид, формально совпадающий с (3.2). В самом деле, момент импульса тела ${\displaystyle \bf L}_{0}$относительно движущегося центра .масс О связан с моментом импульса ${\displaystyle \bf L}_{{\displaystyle 0}'}$относительно неподвижной - точки O' соотношением:

$ {\displaystyle \bf L}_{0} = {\displaystyle \bf L}_{{\displaystyle 0}'} - {\displaystyle \bf R}\times {\displaystyle \bf p}, $

(3.3)

где R - радиус-вектор от O' к О, p - полный импульс тела. Аналогичное соотношение легко может быть получено и для моментов силы:

$ {\displaystyle \bf M}_{0} = {\displaystyle \bf M}_{{\displaystyle 0}'} - {\displaystyle \bf R}\times {\displaystyle \bf F}, $

(3.4)

где F - геометрическая сумма всех сил, действующих на твердое тело.

Поскольку точка O' неподвижна, то справедливо уравнение моментов (3.2):

$ {\displaystyle \frac{\displaystyle {\displaystyle d{\displaystyle \bf L}_{{\displaystyle 0}'} }}{\displaystyle {\displaystyle dt}}} = {\displaystyle \bf M}_{{\displaystyle 0}'} . $

(3.5)

Тогда

$ {\displaystyle \frac{\displaystyle {\displaystyle d{\displaystyle \bf L}_{0} }}{\displaystyle {\displaystyle dt}}} = \left( {\displaystyle {\displaystyle \frac{\displaystyle {\displaystyle d{\displaystyle \bf L}_{{\displaystyle 0}'} }}{\displaystyle {\displaystyle dt}}} - {\displaystyle \bf R}\times {\displaystyle \frac{\displaystyle {\displaystyle d{\displaystyle \bf p}}}{\displaystyle {\displaystyle dt}}}} \right) - {\displaystyle \frac{\displaystyle {\displaystyle d{\displaystyle \bf R}}}{\displaystyle {\displaystyle dt}}}\times {\displaystyle \bf p} = \left( {\displaystyle {\displaystyle \frac{\displaystyle {\displaystyle d{\displaystyle \bf L}_{{\displaystyle 0}'} }}{\displaystyle {\displaystyle dt}}} - {\displaystyle \bf R}\times {\displaystyle \bf F}} \right) - {\displaystyle \bf v}_{{\displaystyle \bf 0}} \times {\displaystyle \bf p} $

(3.6)

Величина ${\displaystyle \bf v}_{{\displaystyle \bf 0}} = {\displaystyle \frac{\displaystyle {\displaystyle d{\displaystyle \bf R}}}{\displaystyle {\displaystyle dt}}}$есть скорость точки О в лабораторной системе XYZ. Учитывая (3.4), получим

$ {\displaystyle \frac{\displaystyle {\displaystyle d{\displaystyle \bf L}_{0} }}{\displaystyle {\displaystyle dt}}} = {\displaystyle \bf M}_{0} - {\displaystyle \bf v}_{{\displaystyle \bf 0}} \times {\displaystyle \bf p}. $

(3.7)

Поскольку движущаяся точка O - это центр масс тела, то ${\displaystyle \bf p} = m{\displaystyle \bf v}_{{\displaystyle \bf 0}}$($m$ - масса тела), ${\displaystyle \bf v}_{{\displaystyle \bf 0}} \times {\displaystyle \bf p} = 0$и ${\displaystyle \frac{\displaystyle {\displaystyle d{\displaystyle \bf L}_{0} }}{\displaystyle {\displaystyle dt}}} = {\displaystyle \bf M}_{0} ,$то есть уравнение моментов относительно движущегося центра масс имеет такой же вид, что и относительно неподвижной точки. Скорости всех точек тела при определении ${\displaystyle \bf L}_{0}$следует брать относительно центра масс тела.

Ранее было показано, что произвольное движение твердого тела можно разложить на поступательное (вместе с системой x0y0z0, начало которой находится в некоторой точке - полюсе, жестко связанной с телом) и вращательное (вокруг мгновенной оси, проходящей через полюс). С точки зрения кинематики выбор полюса особого значения не имеет, с точки же зрения динамики полюс, как теперь понятно, удобно поместить в центр масс. Именно в этом случае уравнение моментов (3.2) может быть записано относительно центра масс (или оси, проходящей через центр масс) как относительно неподвижного начала (или неподвижное оси).

Если $\sum {\displaystyle {\displaystyle \bf F}}$не зависит от угловой скорости тела, а $\sum {\displaystyle {\displaystyle \bf M}}$- от скорости центра масс, то уравнения (3.1) и (3.2) можно рассматривать независимо друг от друга. В этом случае уравнение (3.1) соответствует просто задаче из механики точки, а уравнение (3.2) - задаче о вращении твердого тела вокруг неподвижной точки или неподвижной оси. Пример ситуации, когда уравнения (3.1) и (3.2) нельзя рассматривать независимо - движение вращающегося твердого тела в вязкой среде.

Далее в этой лекции мы рассмотрим уравнения динамики для трех частных случаев движения твердого тела: вращения вокруг неподвижной оси, плоского движения и, наконец, движения твердого тела, имеющего ось симметрии и закрепленного в центре масс.

 
I. Вращение твердого тела вокруг неподвижной оси.

В этом случае движение твердого тела определяется уравнением

$ {\displaystyle \frac{\displaystyle {\displaystyle dL_{\parallel} }}{\displaystyle {\displaystyle dt}}} = M_{\parallel} . $

Здесь $L_{\parallel}$- это момент импульса относительно оси вращения, то есть проекция на ось момента импульса, определенного относительно некоторой точки, принадлежащей оси. $M_{\parallel}$- это момент внешних сил относительно оси вращения, то есть проекция на ось результирующего момента внешних сил, определенного относительно некоторой точки, принадлежащей оси, причем выбор этой точки на оси, как и в случае с $L_{\parallel} ,$значения не имеет. Действительно (рис. 3.4), $M_{\parallel} = rF\cos \alpha = \rho F,$где $F$- составляющая силы, приложенной к твердому телу, перпендикулярная оси вращения, $\rho$- плечо силы $F$относительно оси.

Рис. 3.4.

Поскольку $L_{\parallel} = J\omega$($J = \int {\displaystyle \rho ^{2}} dm $ - момент инерции тела относительно оси вращения), то вместо ${\displaystyle \frac{\displaystyle {\displaystyle dL_{\parallel} }}{\displaystyle {\displaystyle dt}}} = M_{\parallel}$можно записать

$ {\displaystyle \frac{\displaystyle {\displaystyle d}}{\displaystyle {\displaystyle dt}}}\left( {\displaystyle J\omega} \right) = M_{\parallel} $

(3.8)

или

$ J{\displaystyle \frac{\displaystyle {\displaystyle d\omega}}{\displaystyle {\displaystyle dt}}} = M_{\parallel} , $

(3.9)

поскольку в случае твердого тела $J = {\displaystyle \rm const}.$

Уравнение (3.9) и есть основное уравнение динамики вращательного движения твердого тела вокруг неподвижной оси. Его векторная. форма имеет вид:

$ J{\displaystyle \frac{\displaystyle {\displaystyle d\omega}}{\displaystyle {\displaystyle dt}}} = {\displaystyle \bf M}_{\parallel} $

(3.10)

Вектор $\omega$всегда направлен вдоль оси вращения, а ${\displaystyle \bf M}_{\parallel}$- это составляющая вектора момента силы вдоль оси.

В случае $M_{\parallel}=0$получаем $\omega = {\displaystyle \rm const},$соответственно и момент импульса относительно оси $L_{\parallel}$сохраняется. При этом сам вектор L, определенный относительно какой-либо точки на оси вращения, может меняться. Пример такого движения показан на рис. 3.5.

Рис. 3.5.

Стержень АВ, шарнирно закрепленный в точке А, вращается по инерции вокруг вертикальной оси таким образом, что угол $\alpha$между осью и стержнем остается постоянным. Вектор момента импульса L, относительно точки А движется по конический поверхности с углом полураствора $\beta = {\displaystyle \frac{\displaystyle {\displaystyle \pi }}{\displaystyle {\displaystyle 2}}} - \alpha$однако проекция L на вертикальную ось остается постоянной, поскольку момент силы тяжести относительно этой оси равен нулю.

Кинетическая энергия вращающегося тела и работа внешних сил (ось вращения неподвижна).

Скорость i -й частицы тела

$ v_{i} = \omega \rho _{i} , $

(3.11)

где $\rho _{i}$- расстояние частицы до оси вращение Кинетическая энергия

$ T = {\displaystyle \frac{\displaystyle {\displaystyle 1}}{\displaystyle {\displaystyle 2}}}{\displaystyle \sum\limits_{i} {\displaystyle m_{i} } }v_{i}^{2} = {\displaystyle \frac{\displaystyle {\displaystyle 1}}{\displaystyle {\displaystyle 2}}}{\displaystyle \sum\limits_{i} {\displaystyle m_{i} } }\rho _{i}^{2} \omega ^{2} = {\displaystyle \frac{\displaystyle {\displaystyle 1}}{\displaystyle {\displaystyle 2}}}J\omega ^{2}, $

(3.12)

так как угловая скорость вращения для всех точек одинакова.

В соответствии с законом изменения механической энергии системы элементарная работа всех внешних сил равна приращению кинетической энергии тела:

$ \delta A = d\left( {\displaystyle {\displaystyle \frac{\displaystyle {\displaystyle 1}}{\displaystyle {\displaystyle 2}}}J\omega ^{2}} \right) = J\omega \cdot d\omega = M_{\parallel} \omega \cdot dt = M_{{\displaystyle \left\| {\displaystyle } \right.}} \cdot d\varphi $

(3.13)

Работа внешних сил при повороте тела на конечный угол $\varphi _{0}$равна

$ A = {\displaystyle \int\limits_{0}^{\varphi _{0} } {\displaystyle M_{\parallel} } } \cdot d\varphi . $

(3.14)

опустим, что диск точила вращается по инерции с угловое скоростью $\omega _{0} ,$и мы останавливаем его, прижимая какой-либо предмет к краю диска с постоянным усилием. При этом на диск будет действовать постоянная по величине сила $F_{тр} ,$направленная перпендикулярно его оси. Работа этой силы

$ A_{тр} = - F_{тр} \cdot R\varphi , $

где $R$- радиус диска, $\varphi$- угол его поворота. Число оборотов, которое сделает диск до полной остановки,

$ n = {\displaystyle \frac{\displaystyle {\displaystyle \varphi }}{\displaystyle {\displaystyle 2\pi }}} = {\displaystyle \frac{\displaystyle {\displaystyle J\omega _{0}^{2} }}{\displaystyle {\displaystyle 4\pi \cdot F_{тр} \cdot R}}}, $

где $J$- момент инерции диска точила вместе с якорем электромотора.

Замечание. Если силы таковы, что $M_{\parallel} = 0,$то работу они не производят.

Свободные оси. Устойчивость свободного вращения.

При вращении тела вокруг неподвижной оси эта ось удерживается в неизменном положении подшипниками. При вращении несбалансированных частей механизмов оси (валы) испытывают определенную динамическую нагрузку, Возникают вибрации, тряска, и механизмы могут разрушиться.

Если твердое тело раскрутить вокруг произвольной оси, жестко связанной с телом, и высвободить ось из подшипников, то ее направление в пространстве, вообще говоря, будет меняться. Для того, чтобы произвольная ось вращения тела сохраняла свое направление неизменным, к ней необходимо приложить определенные силы. Возникающие при этом ситуации показаны на рис. 3.6.

Рис. 3.6.

В качестве вращающегося тела здесь использован массивный однородный стержень АВ, прикрепленный к достаточно эластичной оси (изображена двойными штриховыми линиями). Эластичность оси позволяет визуализировать испытываемые ею динамические нагрузки. Во всех случаях ось вращения вертикальна, жестко связана со стержнем и укреплена в подшипниках; стержень раскручен вокруг этой оси и предоставлен сам себе.

В случае, изображенном на рис. 3.6а, ось вращения является для точки В стержня главной, но не центральной, ${\displaystyle \bf L}\parallel \omega.$Ось изгибается, со стороны оси на стержень действует сила ${\displaystyle \bf F}_{упр} ,$обеспечивающая его вращение (в НИСО, связанной со стержнем, эта сила уравновешивает центробежную силу инерции). Со стороны стержня на ось действует сила ${\displaystyle {\displaystyle \bf F}}',$уравновешенная силами ${\displaystyle \bf Ф'}$со стороны подшипников.

В случае рис. 3.6б ось вращения проходит через центр масс стержня и является для него центральной, но не главной. Момент импульса относительно центра масс О не сохраняется и описывает коническую поверхность. Ось сложным образом деформируется (изламывается), со стороны оси на стержень действуют силы ${\displaystyle \bf F}_{упр.1}$и ${\displaystyle \bf F}_{упр.2},$момент которых обеспечивает приращение $d{\displaystyle \bf L}.$(В НИСО, связанной со стержнем, момент упругих сил компенсирует момент центробежных сил инерции, действующих на одну и другую половины стержня). Со стороны стержня на ось действуют силы ${\displaystyle \bf {\displaystyle F}'}_{1}$и ${\displaystyle \bf {\displaystyle F}'}_{2} ,$направленные противоположно силам ${\displaystyle \bf F}_{упр.1}$и ${\displaystyle \bf F}_{упр.2}.$Момент сил ${\displaystyle \bf {\displaystyle F}'}_{1}$и ${\displaystyle \bf {\displaystyle F}'}_{2} ,$уравновешен моментом сил ${\displaystyle \bf Ф'}_{1}$и ${\displaystyle \bf Ф'}_{2} ,$возникающих в подшипниках.

И только в том случае, когда ось вращения совпадает с главной центральной осью инерции тела (рис.3.6в), раскрученный и предоставленный сам себе стержень не оказывает на подшипники никакого воздействия. Такие оси называют свободными осями, потому что, если убрать подшипники, они будут сохранять свое направление в пространстве неизменным.

Иное дело, будет ли это вращение устойчивым по отношению к малым возмущениям, всегда имеющим место в реальных условиях. Опыты показывают, что вращение вокруг главных центральных осей с наибольшим и наименьшим моментами инерции является устойчивым, а вращение вокруг оси с промежуточным значением момента инерции - неустойчивым. В этом можно убедиться, подбрасывая вверх тело в виде параллелепипеда, раскрученное вокруг одной из трех взаимно перпендикулярных главных центральных осей (рис. 3.7). Ось AA' соответствует наибольшему, ось BB' - среднему, а ось CC' - наименьшему моменту инерции параллелепипеда. Если подбросить такое тело, сообщив ему быстрое вращение вокруг оси AA' или вокруг оси CC', можно убедиться в том, что это вращение является вполне устойчивым. Попытки заставить тело вращаться вокруг оси BB' к успеху не приводят - тело движется сложным образом, кувыркаясь в полете.

Рис. 3.7.

В телах вращения устойчивой оказывается свободная ось, соответствующая наибольшему моменту инерции. Так, если сплошной однородный диск подвесить к быстровращающемуся валу электромотора (рис. 3.8, ось вращения вертикальна), то диск довольно быстро займет горизонтальное положение, устойчиво вращаясь вокруг центральной оси, перпендикулярной к плоскости диска.

Рис. 3.8.

Центр удара.

Опыт показывает, что если тело, закрепленное на оси вращения, испытывает удар, то действие удара в общем случае передается и на ось. При этом величина и направление силы, приложенной к оси, зависят от того, в какую точку тела нанесен удар.

Рассмотрим сплошной однородный стержень АВ, подвешенный в точке А на горизонтальной, закрепленной в подшипниках оси OO' (рис. 3.9). Если удар (короткодействующая сила F ( нанесен близко к оси вращения, то ось прогибается в направлении действия силы F (рис. 3.9а). Если удар нанесен по нижнему концу стержня, вблизи точки В, то ось прогибается в противоположном направлении (рис. 3.9б). Наконец, если удар нанесен в строго определенную точку стержня, называемую центром удара (рис. 3.9в, точка С), то ось не испытывает никаких дополнительных нагрузок, связанных с ударом. Очевидно, в этом случае скорость поступательного движения, приобретаемого точной А вместе с центром масс O, будет компенсироваться линейной скоростью вращательного движения вокруг центра масс О (оба эти движения инициируются силой F и происходят одновременно).

Рис. 3.9.

Вычислим, на каком расстоянии $\ell$от точки подвеса стержня находится центр удара. Уравнение моментов относительно оси вращения OO' дает

$ J \cdot {\displaystyle \frac{\displaystyle {\displaystyle d\omega}}{\displaystyle {\displaystyle dt}}} = F \cdot \ell . $

(3.15)

Сил реакции со стороны оси, как предполагается, при ударе не возникает, поэтому на основании теоремы о движении центра масс можно записать

$ m \cdot {\displaystyle \frac{\displaystyle {\displaystyle dv_{0} }}{\displaystyle {\displaystyle dt}}} = F, $

(3.16)

где $m$- масса тела, $v_{0}$- скорость центра масс. Если $а$- расстояние от оси до центра масс тела, то

$ v_{0} = \omega a, $

(3.17)

и в результате из уравнения моментов и уравнения движения центра масс находим

$ \ell = {\displaystyle \frac{\displaystyle {\displaystyle J}}{\displaystyle {\displaystyle ma}}}. $

(3.18)

При этом точка C (центр удара) совпадает с так называемым центром качания данного физического маятника - точкой, где надо сосредоточить всю массу твердого тела, чтобы полученный математический маятник имел такой же период колебаний, как и данный физический.

В случае сплошного однородного стержня длиной $L$имеем:

$ a = {\displaystyle \frac{\displaystyle {\displaystyle L}}{\displaystyle {\displaystyle 2}}}, \quad J = {\displaystyle \frac{\displaystyle {\displaystyle mL^{2}}}{\displaystyle {\displaystyle 3}}},\quad и \quad \ell = {\displaystyle \frac{\displaystyle {\displaystyle 2}}{\displaystyle {\displaystyle 3}}}L. $

Замечание. Полученное выражение для $\ell$(3.18) справедливо и для произвольного твердого тела. При этом надо только иметь в виду, что точка подвеса тела А и центр масс О должны лежать на одной вертикали, а ось вращения должна совпадать с одной из главных осей инерции тела, проходящих через точку А.

Пример 1. При ударах палкой длиной $L$по препятствию рука "не чувствует" удара (не испытывает отдачи) в том случае, если удар приходится в точку, расположенную на расстоянии $L - \ell = L - {\displaystyle \frac{\displaystyle {\displaystyle 2}}{\displaystyle {\displaystyle 3}}}L = {\displaystyle \frac{\displaystyle {\displaystyle 1}}{\displaystyle {\displaystyle 3}}}L$свободного конца палки.

Пример 2. При горизонтальном ударе кием по бильярдному шару (рис. 3.10) шар начинает качение без проскальзывания в том случае, еcли удар нанесен в точку, находящуюся на высоте

$ h = {\displaystyle \frac{\displaystyle {\displaystyle J}}{\displaystyle {\displaystyle ma}}} = {\displaystyle \frac{\displaystyle {\displaystyle {\displaystyle \frac{\displaystyle {\displaystyle 7}}{\displaystyle {\displaystyle 5}}}mR^{2}}}{\displaystyle {\displaystyle mR}}} = {\displaystyle \frac{\displaystyle {\displaystyle 7}}{\displaystyle {\displaystyle 5}}}R $

от поверхности бильярда, то есть на $h - R = {\displaystyle \frac{\displaystyle {\displaystyle 2}}{\displaystyle {\displaystyle 5}}}R$выше центра шара. Если удар будет нанесен ниже, качение будет сопровождаться скольжением в направлении движении шара. Если удар нанесен выше, то шар в точке касания с бильярдным столом будет проскальзывать назад.

Рис. 3.10.

Рассмотренные примеры формально не относятся к вращению твердого тела вокруг неподвижной оси, однако все приведенные выше соображения о центре удара, очевидно, остаются в силе и в этих случаях.

 

 

II. Плоское движение твердого тела.

Напомним, что при плоском движении все точки тела движутся в плоскостях, параллельных некоторой неподвижной плоскости, поэтому достаточно рассмотреть движение одного из сечения тела, например, того, в котором лежит центр масс. При разложении плоского движения на поступательное и вращательное скорость поступательного движения определена неоднозначно - она зависит от выбора оси вращения, однако угловая скорость вращательного движения оказывается одной и той же.

Если в качестве оси вращения выбрать ось, проходящую через центр масс, то уравнениями движения твердого тела будут:


Информация о работе «Динамика твердого тела»
Раздел: Физика
Количество знаков с пробелами: 23459
Количество таблиц: 55
Количество изображений: 11

Похожие работы

Скачать
136506
5
32

... , нужно посредством правил подсчета значащих цифр округлить результат математических вычислений так, чтобы точность их соответствовала точности данных, полученных от измерения. ИЗУЧЕНИЕ КИНЕМАТИКИ И ДИНАМИКИ ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ НА МАШИНЕ АТВУДА Цель работы Экспериментальная проверка основных уравнений и законов поступательного движения тела на специально сконструированной для этого ...

Скачать
18508
2
4

... инерции физического маятника равен , где  момент инерции стержня, на котором крепится диск с моментом инерции ). Чаще всего при решении задач основное уравнение динамики вращательного движения твердого тела относительно неподвижной оси в случае постоянных момента силы  и момента инерции  используется в виде , где изменение момента импульса вращающего тела равно произведению среднего момента сил, ...

Скачать
16578
6
4

... ВПО «ЧЕРЕПОВЕЦКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет общих математических и естественнонаучных дисциплин Кафедра общей физики ЛАБОРАТОРНАЯ РАБОТА №23 Проверка основного закона динамики вращательного движения твердого тела относительно неподвижной оси выполнил: студент гр. 5СКб-11 Череповец, 2009/10 уч. Год проверил: ассис. Герасимов Р.А. Введение   ...

Скачать
11048
0
1

е является проблема лазерного охлаждения твердых тел. При комнатной температуре атомы и молекулы, из которых состоит воздух, двигаются в различных направлениях со скоростью около 4000км/час. Такие атомы и молекулы трудно изучать, потому что они слишком быстро исчезают из области наблюдения. Понижая температуру, можно уменьшить скорость, однако проблема состоит в том, что при охлаждении газы обычно ...

0 комментариев


Наверх