1. Уравнение движения центра масс

$ m{\displaystyle \frac{\displaystyle {\displaystyle d{\displaystyle \bf v}_{0} }}{\displaystyle {\displaystyle dt}}} = {\displaystyle \bf F}_{0} . $

(3.19)

2. Уравнение моментов относительно оси, проходящей через центр масс

$ J_{0} {\displaystyle \frac{\displaystyle {\displaystyle d\omega}}{\displaystyle {\displaystyle dt}}} = {\displaystyle \bf M}_{0} . $

(3.20)

Особенностью плоского движения является то, что ось вращения сохраняет свою ориентацию в пространстве и остается перпендикулярной плоскости, в которой движется центр масс. Еще раз подчеркнем, что уравнение моментов (3.20) записано относительно, в общем случае, ускоренно движущегося центра масс, однако, как было отмечено в начале лекции, оно имеет такой же вид, как и уравнение моментов относительно неподвижной точки.

В качестве примера рассмотрим задачу о скатывании цилиндра с наклонное плоскости. Приведем два способа решения этой задачи с использованием уравнений динамики твердого тела.

Первый способ. Рассматривается вращение цилиндра относительно оси, проходящее через центр масс (рис. 3.11).

Рис. 3.11.

Система уравнений (3.19 - 3.20) имеет вид:

$ {\displaystyle \left\{\displaystyle {\displaystyle \begin{array}{l} {\displaystyle m \cdot {\displaystyle \frac{\displaystyle {\displaystyle d{\displaystyle \bf v}_{0} }}{\displaystyle {\displaystyle dt}}}m{\displaystyle \bf g} + {\displaystyle \bf F}_{тр} + {\displaystyle \bf N};} \\ {\displaystyle J_{0} {\displaystyle \frac{\displaystyle {\displaystyle d\omega}}{\displaystyle {\displaystyle dt}}} = {\displaystyle \bf R}\times {\displaystyle \bf F}_{тр} .} \\ \end{array}} \right.} \quad \begin{array}{l} (3.21) \\ (3.22) \\ \end{array} $

К этой системе необходимо добавить уравнение кинематической связи

$ {\displaystyle \frac{\displaystyle {\displaystyle d{\displaystyle \bf v}_{0} }}{\displaystyle {\displaystyle dt}}} = {\displaystyle \bf R}\times {\displaystyle \frac{\displaystyle {\displaystyle d\omega}}{\displaystyle {\displaystyle dt}}}. $

(3.23)

Последнее уравнение получается из условия, что цилиндр скатывается без проскальзывания, то есть скорость точки М цилиндра равна нулю.

Уравнение движения центра масс (3.1) запишем для проекций ускорения и сил на ось x вдоль наклонной плоскости, а уравнение моментов (3.22) - для проекций углового ускорения и момента силы трения на ось y , совпадающую с осью цилиндра. Направления осей x и у выбраны согласованно, в том смысле, что положительному линейному ускорению оси цилиндра соответствует положительное же угловое ускорение вращения вокруг этой оси. В итоге получим:

$ {\displaystyle \left\{\displaystyle {\displaystyle \begin{array}{l} {\displaystyle ma = mg\sin \alpha - F_{тр} ;} \\ {\displaystyle J_{0} {\displaystyle \frac{\displaystyle {\displaystyle d\omega }}{\displaystyle {\displaystyle dt}}} = F_{тр} \cdot R;} \\ {\displaystyle a = {\displaystyle \frac{\displaystyle {\displaystyle d\omega }}{\displaystyle {\displaystyle dt}}} \cdot R.} \\ \end{array}} \right.} \quad \begin{array}{l} (3.24) \\ (3.25) \\ (3.26) \\ \end{array} $

откуда

$ a = {\displaystyle \frac{\displaystyle {\displaystyle g\sin \alpha }}{\displaystyle {\displaystyle 1 + {\displaystyle \frac{\displaystyle {\displaystyle J_{0} }}{\displaystyle {\displaystyle mR^{2}}}}}}}. $

(3.27)

Следует подчеркнуть, что $F_{тр}$- сила трения сцепления - может принимать любое значение в интервале от О до $\left( {\displaystyle F_{тр} } \right)_{макс}$(сила трения скольжения) в зависимости от параметров задачи. Работу эта сила не совершает, но обеспечивает ускоренное вращение цилиндра при его скатывании с наклонной плоскости. В данном случае

$ F_{тр} = {\displaystyle \frac{\displaystyle {\displaystyle J_{0} }}{\displaystyle {\displaystyle R^{2}}}} \cdot {\displaystyle \frac{\displaystyle {\displaystyle g\sin \alpha }}{\displaystyle {\displaystyle 1 + {\displaystyle \frac{\displaystyle {\displaystyle J_{0} }}{\displaystyle {\displaystyle mR^{2}}}}}}}. $

(3.28)

Если цилиндр сплошной, то

$ J_{0} = {\displaystyle \frac{\displaystyle {\displaystyle 1}}{\displaystyle {\displaystyle 2}}}mR^{2}; \quad a = {\displaystyle \frac{\displaystyle {\displaystyle 2}}{\displaystyle {\displaystyle 3}}}g\sin \alpha ; \quad F_{тр} = {\displaystyle \frac{\displaystyle {\displaystyle 1}}{\displaystyle {\displaystyle 3}}}mg\sin \alpha . $

(3.29)

Качение без проскальзывания определяется условием

$ F_{тр} \le kN, $

(3.30)

где $k$- коэффициент трения скольжения, $N = mg\cos \alpha$- сила реакции опоры. Это условие сводится к следующему:

$ {\displaystyle \frac{\displaystyle {\displaystyle 1}}{\displaystyle {\displaystyle 3}}}mg\sin \alpha \le kmg\cos \alpha , $

(3.31)

или

$ tg\alpha \le 3k. $

(3.32)

Второй способ. Рассматривается вращение цилиндра относительно неподвижной оси, совпадающей в данный момент времени с мгновенной осью вращения (рис. 3.12).

Рис. 3.12.

Мгновенная ось вращения проходит через точку соприкосновения цилиндра и плоскости (точку М). При таком подходе отпадает необходимость в уравнении движении центра масс и уравнении кинематической связи. Уравнение моментов относительно мгновенной оси имеет вид:

$ J \cdot {\displaystyle \frac{\displaystyle {\displaystyle d\omega}}{\displaystyle {\displaystyle dt}}} = {\displaystyle \bf R}\times \left( {\displaystyle m{\displaystyle \bf g}} \right). $

(3.33)

Здесь

$ J = J_{0} + mR^{2}. $

(3.34)

В проекции на ось вращения (ось y)

$ J \cdot {\displaystyle \frac{\displaystyle {\displaystyle d\omega }}{\displaystyle {\displaystyle dt}}} = Rmg \cdot \sin \left( {\displaystyle 180^{0} - \alpha } \right) = Rmg\sin \alpha . $

(3.35)

Ускорение центра масс выражается через угловое ускорение

$ a = {\displaystyle \frac{\displaystyle {\displaystyle d\omega }}{\displaystyle {\displaystyle dt}}}R = {\displaystyle \frac{\displaystyle {\displaystyle g\sin \alpha }}{\displaystyle {\displaystyle 1 + {\displaystyle \frac{\displaystyle {\displaystyle J_{0} }}{\displaystyle {\displaystyle mR^{2}}}}}}}. $

(3.36)
Кинетическая энергия при плоском движении.

Кинетическая энергия твердого тела представляет собой сумму кинетических энергий отдельных частиц:

$ T = {\displaystyle \sum\limits_{i} {\displaystyle {\displaystyle \frac{\displaystyle {\displaystyle m_{i} v_{i}^{2} }}{\displaystyle {\displaystyle 2}}}} } = {\displaystyle \sum\limits_{i} {\displaystyle {\displaystyle \frac{\displaystyle {\displaystyle 1}}{\displaystyle {\displaystyle 2}}}} }m_{i} \left( {\displaystyle {\displaystyle \bf v}_{0} + {\displaystyle \bf u}_{i} } \right)^{2}, $

(3.37)

где ${\displaystyle \bf v}_{0}$- скорость центра масс тела, ${\displaystyle \bf u}_{i}$- скорость i-й частицы относительно системы координат, связанной с центром масс и совершающей поступательное движение вместе с ним. Возводя сумму скоростей в квадрат, получим:

$ T = {\displaystyle \frac{\displaystyle {\displaystyle v_{0}^{2} }}{\displaystyle {\displaystyle 2}}}{\displaystyle \sum\limits_{i} {\displaystyle m_{i} } } + {\displaystyle \bf v}_{0} {\displaystyle \sum\limits_{i} {\displaystyle m_{i} } }{\displaystyle \bf u}_{i} + {\displaystyle \frac{\displaystyle {\displaystyle 1}}{\displaystyle {\displaystyle 2}}}{\displaystyle \sum\limits_{i} {\displaystyle m_{i} } }u_{i}^{2} = {\displaystyle \frac{\displaystyle {\displaystyle mv_{0}^{2} }}{\displaystyle {\displaystyle 2}}} + {\displaystyle \frac{\displaystyle {\displaystyle J_{0} \omega ^{2}}}{\displaystyle {\displaystyle 2}}}, $

(3.38)

так как ${\displaystyle \sum\limits_{i} {\displaystyle m_{i} } }{\displaystyle \bf u}_{i} = 0$(суммарный импульс частиц в системе центра масс равен нулю).

Таким образом, кинетическая энергия при плоском движении равна сумме кинетических энергий поступательного и вращательного движений (теорема Кенига). Если рассматривать плоское движение как вращение вокруг мгновенной оси, то кинетическая энергия тела есть энергия вращательного движения.

В этой связи задачу о скатывании цилиндра с наклонной плоскости можно решить, используя закон сохранения механической энергии (напомним, что сила трения при качении без проскальзывания работу не совершает).

Приращение кинетической энергии цилиндра равно убыли его потенциальное энергии:

$ {\displaystyle \frac{\displaystyle {\displaystyle J\omega ^{2}}}{\displaystyle {\displaystyle 2}}} = mgh = mgx\sin \alpha . $

(3.39)

Здесь $x$- длина наклонной плоскости, $J = J_{0} + mR^{2}$- момент инерции цилиндра относительно мгновенной оси вращения.

Поскольку скорость оси цилиндра $v = \frac{\displaystyle dx}{\displaystyle dt} = \omega R,$то

$ {\displaystyle \frac{\displaystyle {\displaystyle J}}{\displaystyle {\displaystyle 2}}} \cdot {\displaystyle \frac{\displaystyle {\displaystyle v^{2}}}{\displaystyle {\displaystyle R^{2}}}} = mgx\sin \alpha . $

(3.40)

Дифференцируя обе части этого уравнения по времени, получим

$ {\displaystyle \frac{\displaystyle {\displaystyle J}}{\displaystyle {\displaystyle 2R^{2}}}} \cdot 2v{\displaystyle \frac{\displaystyle {\displaystyle dv}}{\displaystyle {\displaystyle dt}}} = mg \cdot {\displaystyle \frac{\displaystyle {\displaystyle dx}}{\displaystyle {\displaystyle dt}}} \cdot \sin \alpha , $

(3.41)

откуда для линейного ускорения $a = {\displaystyle \frac{\displaystyle {\displaystyle dv}}{\displaystyle {\displaystyle dt}}}$оси цилиндра будем иметь то же выражение, что и при чисто динамическом способе решения (см. (3.27, 3.36)).

Замечание. Если цилиндр катится с проскальзыванием, то изменение его кинетической энергии будет определяться также и работой сил трения. Последняя, в отличие от случая, когда тело скользит по шероховатой поверхности, не вращаясь, определяется, в соответствии с (3.14), полным углом поворота цилиндра, а не расстоянием, на которое переместилась его ось.


Заключение

 

Динамика твердого тела на данном этапе используется для тел, движущихся в сплошной среде.

В задаче о полете тела с тремя несущими поверхностями при наличии динамической асимметрии определены условия, при которых проявляются синхронизмы 1:3. С увеличением угловой скорости вращения тела около продольной оси даже на поверхности рассеивания заметно ослабление этого эффекта.

Разработана программа имитационного моделирования комплекса задач по динамике полета противоградовых ракет. С ее помощью построены таблицы введения поправок на установочные углы запуска ракет для наилучшей компенсации вредного влияния ветра.

Создана механико-математическая модель полета бумеранга. Открыта лаборатория навигации и управления.

Разработан и внедрен на аэродинамической трубе А-8 комплекс механического оборудования и сопутствующей измерительной аппаратуры для проведения динамических испытаний моделей. Определены коэффициенты демпфирования поперечных колебаний осесимметричных оперенных тел различного удлинения при раскрутке вокруг собственной оси в до- и сверхзвуковом потоках.

На основе численного решения задачи о плоских движениях аэродинамического маятника (с несущей поверхностью в виде прямоугольной пластины) в несжимаемой жидкости с учетом динамики вихрей определены области существования всех типов движения маятника, включая режимы автоколебаний и авторотации. Открыта лаборатория сверхзвуковой аэродинамики.

Также в институте компьютерных исследований проводят значимые исследования по динамике твердого тела.

Это направление исследований института связано с анализом движения твердого тела с широким применением компьютерных методов.

Компьютерные исследования в динамике твердого тела относятся к отдельной области науки - компьютерной динамике, которая устанавливает общие закономерности движения систем при помощи различных численных методов и алгоритмов.

В сочетании с аналитическими методами, достижениями топологии, анализа, теории устойчивости и других методов компьютерная динамика применяется, главным образом, в исследовании интегрируемых задач, в частности, динамических проблем теории волчков. Такой подход позволяет получить достаточно полное представление о движении, разобраться во всем его многообразии и наглядно представить себе каждое конкретное движение и его особенности.

Помимо анализа интегрируемых ситуаций в институте начато исследование случаев хаотического поведения в динамике твердого тела. Эти исследования, которые ранее почти не проводились, основаны на широком применении высокоточного компьютерного моделирования. Ожидается, что изучение этой области динамики твердого тела позволит получить в перспективе много новых интересных результатов.

Кроме того, в институте проводятся исследования с использованием методов пуассоновой динамики и геометрии, теории групп и алгебр Ли - методов, которые во многом возникли из задач динамики твердого тела.


Информация о работе «Динамика твердого тела»
Раздел: Физика
Количество знаков с пробелами: 23459
Количество таблиц: 55
Количество изображений: 11

Похожие работы

Скачать
136506
5
32

... , нужно посредством правил подсчета значащих цифр округлить результат математических вычислений так, чтобы точность их соответствовала точности данных, полученных от измерения. ИЗУЧЕНИЕ КИНЕМАТИКИ И ДИНАМИКИ ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ НА МАШИНЕ АТВУДА Цель работы Экспериментальная проверка основных уравнений и законов поступательного движения тела на специально сконструированной для этого ...

Скачать
18508
2
4

... инерции физического маятника равен , где  момент инерции стержня, на котором крепится диск с моментом инерции ). Чаще всего при решении задач основное уравнение динамики вращательного движения твердого тела относительно неподвижной оси в случае постоянных момента силы  и момента инерции  используется в виде , где изменение момента импульса вращающего тела равно произведению среднего момента сил, ...

Скачать
16578
6
4

... ВПО «ЧЕРЕПОВЕЦКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет общих математических и естественнонаучных дисциплин Кафедра общей физики ЛАБОРАТОРНАЯ РАБОТА №23 Проверка основного закона динамики вращательного движения твердого тела относительно неподвижной оси выполнил: студент гр. 5СКб-11 Череповец, 2009/10 уч. Год проверил: ассис. Герасимов Р.А. Введение   ...

Скачать
11048
0
1

е является проблема лазерного охлаждения твердых тел. При комнатной температуре атомы и молекулы, из которых состоит воздух, двигаются в различных направлениях со скоростью около 4000км/час. Такие атомы и молекулы трудно изучать, потому что они слишком быстро исчезают из области наблюдения. Понижая температуру, можно уменьшить скорость, однако проблема состоит в том, что при охлаждении газы обычно ...

0 комментариев


Наверх