3. Неупрутие атомно-молекудярные соударения, приводящие к диссоциации молекул с переходом одного из атомов в возбужденное состояние
На рис.80 показано схематическое устройство газового ОКГ. Он состоит из двух основных частей: открытого резонатора, образованного зеркалами 3^ и 3^ , и газоразрядной камеры, наполненной рабочей смесью He-Ne .
Газоразрядная камера представляет собой кварцевую или стеклянную трубку (обычно длиной от 1,5+2 дм до 1,&г2 м и диаметром до &т8 мм), с торцов закрытую плоскопараллельными оптическими окнами, наклоненными под углом Брюстера к оси трубки. Такие окна имеют пренебрежимо малые потери энергии на отражение для волны, поляризованной в плоскости падения, и практически делают невозможной генерацию излучения, поляризованного в перпендикулярной плоскости.
Иногда зеркала укрепляют на концах газоразрядной трубки. Однако такое расположение зеркал значительно усложняет конструкцию вакуумной части ОКГ (необходимо использовать сильфоны для юстировки зеркал) и создает технические трудности для смены зеркал, изменения расстояния между ними, введения в резонатор дополнительных элементов (диафрагм, линз и т.п.). Поэтому конструкции ОКГ с внутренними зеркалами применяются редко и главным образом тогда, котаа необходимо получить генерацию с произвольной поляризацией излучения.
Газоразрядная трубка наполняется рабочей смесью гелия и неона с общим давлением ^-10^ Па. Перед напуском рабочей смеси производят тщательную откачку с интенсивным нагреванием трубки. Для устранения оставшихся после откачки и выделяющихся в процессе работы газов перед отпайкой в трубку вводят геттер обыч но барий), активно поглощающий кислород, водород, азот и другие газы, но не вступающий в соединение с гелием и неоном.
Исследования показывают, что усиление активной среды в гелий-неоновом ОКГ невелико и составляет несколько процентов на метр (например, для перехода 3s о -2рц с Л, = 0,6328 стоя оно не превышает А% на метр, для перехода 2Sn -2рц с Д= I, 152 мкм - 12%). Поэтому в резонаторах гелий-неонового ОКГ приходится использовать зеркала с коэффициентом отражения, близким к единице и отличающимся от нее на доли и единицы процентов. При-меняются главным образом зеркала с интерференционными покрытиями. Малый коэффициент усиления активной среды налагает жесткие требования на точность юстировки зеркал резонатора. Так, в случае резонатора с плоскими зеркалами непараллельность их всего в несколько угловых секунд существенно сказывается на выходной мощности. Значительно меньше зависят от юстировки резо-иаторы со сферическими зеркалами. Обычно поворот сферических зеркал от оптимального положения в пределах нескольких угловых минут мало влияет на величину выходной мощности ОКГ. Поэтому в болышнстве газовых ОКГ используют резонаторы со сферическими зеркалами.
Для возбуждения газовой смеси используют либо разряд на постоянном токе, либо высокочастотный разряд. В первом случае в газоразрядную трубку, как показано на рис.80, вводят электроды - катод Щ, анод ('?). Напряжение питания составляет в зависимости от длины разрядного промежутка величину от нескольких сотен вольт до двух-трех киловольт,ток разряда - несколько десятков миллиампер, Высокочастотный разряд возбуждается радиочастотным генератором с мощностью от десятков до сотен ватт, напряжение от которого подводится к внешним кольцевым электродам, накладываемым на трубку.
Мощность генерации ОКГ зависит от парциальных давлений гелия и неона, размеров газоразрядной трубки, от тока (мощности) разряда. На рис.81 представлена зависимость мощности генерации р от давления гелия при различных давлениях неона.Мощность генерации растет с увеличением парциального давления гелия и неона, достигая максимума при общем давлении,, близком к 100 Па, и затем уменьшается. Рост мощности с давлением гелия объясняется увеличением концентрации его атомов, находящихся в мета-стабильном состоянии, что благодаря процессу резонансной передачи энергии атомам неона, описываемому формулой (123), ведет к росту инверсии населенностей рабочей среды и, следовательно, мощности генерации. При больших давлениях газовой смеси время свободного пробега электронов снижается настолько, что они не успевают достаточно ускориться в электрическом поле и приобрести необходимую энергию. Поэтому эффективность возбуждения ато-мов уменьшается. Мощность генерации существенно зависит от соотношения парциальных давлений гелия и неона в газовой смеси. Как показывают исследования, для генерации на переходе 3$^ --— 2/Dn с /I = 0,6328 мкм оптимальное соотношение для неона и • гелия равно I : 5, а для перехода 25^—2^ с Л-= 1,15 мкм оно равно I : 10 при общем давлении смеси около 100 Па.
Важным вопросом получения максимальной выходной мощности является выбор оптимального диаметра газоразрядной трубки. С одной стороны, увеличение диаметра трубки, а значит, и объема активной среды должно приводить к росту мощности генерации. С другой - чрезмерное увеличение диаметра трубки ведет к уменьшению инверсии населенностей рабочей пары уровней. Это связано с тем, что в процессе генерации опустошение нижнего рабочего уровня 2рь происходит посредством каскадных переходов на ме-тастабильный уровень Is , с которого атомы возвращаются в основное состояние, главным образом под влиянием соударений со стенками трубки. Чем больше радиус трубки, тем больше время диффузии атомов неона к стенкам, а значит, время их жизни в состоянии is . В результате на уровне is скашиваются атомы, откуда они в результате электронного возбуждения переходят в состояние 2р и Зр , уменьиая инверсию населенностей. Экспериментально установлено, что для трубок длиной I м оптимальный диаметр составляет 7-8 мм. Для трубок меньшей длины он получается соответственно меньше.
На рис.82 приведена типичная для гелий-неонового ОКГ зависимость выходной мощности
^вых оттока РварВД® I (мощности разряда). Характер этой
зависимости полностью определяется механизмом возбуждения гелий-неоновой смеси. С увеличением разрядного тока возрастает концентрация электронов в плазме и увеличиваются населенности всех возбужденных состояний атомов гелия и неона, особенно 2s-и 35-состояний, благодаря процессу, описываемому формулами
(123). Поэтому мощность генерации с увеличением тока растет. По мере дальнейшего возрастания тока рост инверсии из-за интенсивного заселения нижних рабочих
уровней 2р и Зр в результате процесса ступенчатого возбуждения через метаотабилъный уровень Is, описываемого формулами
(124), начинает замедляться. При больших разрядных токах (> 100 мА) концентрация атомов неона в долгоживущем метаста-бильном состоянии is становится настолько высокой, что ступенчатое заселение уровней 2р и Зр приводит к уменьшению инверсной заселенности рабочей пары уровней, и мощность генерации падает.
Оптимальная величина тока разряда для разных ОКГ находится в диапазоне 20*80 мА. Исследования показывают, что в оптимальном режиме удельная мощность (мощность с единицы длины разрядной трубки) генерации составляет 30 мВг/м для перехода 3Sn-- 2pq ( Л- = 0,6328 мкм), 50 мВт/м для перехода 25g -2рц (Л, = = 1,152 мкм) и 100 мВт/м для перехода За^ - Зрц ( Л/ =3,394мий).
Коэффициент полезного действия гелий-неонового ОКГ составляет доли процента. Столь низкий КПД объясняется малой квантовой эффективностью рабочих переходов атомов неона и несовершенством процесса возбуждения их. Квантовая эффективность рабочего перехода - это отношение энергии излучаемого фотона к энергии, которая сообщается частице для возбуждения ее до верхнего рабочего уровня. Иными словами, квантовая эффективность показывает , какая доля энергии,затраченная на возбуждение частиц, переходит в энергию генерации. Очевидно, что квантовая эффективность рабочего перехода определяет теоретическое предельное значение КПД ОКГ. Для атомэв неона энергия верхнего рабочего уровня составляет 20 аВ, а энергия фотона генерации с Д=0,6328 мкм равна 2 эВ. Поэтому квантовая эффективность т?д„ « 10?. Таким образом, в когерентное излучение может быть преобразовано лишь 10% общей энергии, сообщенной атому.
С другой стороны, в процессе возбуждения атома Afe до верхнего рабочего уровня эффективно могут участвовать только те электроны, энергия которыг превышает 20 эВ. Так как в гелий-неоновой плазме наиболее аероятная энергия электронов составляет 6+8 аВ, то для возбуждения верхнего рабочего уровня используется лишь небольшая часть энергии, затрачиваемой на поддержание газового разряда. Поатому КПД гелий-неонового ОКГ значительно меньше квантовпй эффективности и составляет доли процента .
Спектр излучения гелий-неонового ОКГ состоит из отдельных . линий, соответствующих продольным к поперечным типам колебаний используемого открытого резонатора. Общая ширина спектра генерации определяется шириной линии усиления активной среды ОКГ. Линия усиления активной среды гелий-неонового ОКГ определяется эффектом Доплера, и ее ширина Д-^у растет с увеличением интенсивности накачки. Для перехода с Л/ = 0,6328 мкм она достигает 2000 МГц, для ^ = 1,152 мкм Ai)^» 1000 МГц, для Л = = 3,394 мкм Дг?,, йг
... между вероятностями соответствующих переходов приводит к преимущественному заселению верхнего рабочего состояния и возникновению инверсии. Активный элемент рубинового ОКГ. Первым оптическим квантовым генератором был генератор, в котором в качестве активного элемента использовался искусственный кристалл рубина. Рубиновый ОКГ и ...
... неоднородность имеет значительную глубину. Прибор интерференционно-теневой ИАБ-458 Прибор интерференционно-теневой ИАБ-458 предназначен для качественных и количественных исследований теневым методом неоднородностей оптически прозрачных сред. В приборе реализуются следующие методы исследования: светящейся точки, щели и ножа, щели и нити, сдвиговой интерферометрии и голографии. На рис. 2.4 ...
... установленными друг против друга. Эти зеркала имеют серебряное либо диэлектрическое отражающее покрытие, состоящее из нескольких слоев диэлектриков, каждый из которых обладает различными оптическими характеристиками. Серебряное покрытие по сравнению с диэлектрическим обладает меньшим коэффициентом отражения и большими потерями. В процессе эксплуатации серебряные покрытия портятся и требуют замены ...
... эффект насыщения). Историческая справка. КЭ сформировалась и развивалась как самостоятельная область науки и техники во вотрой половине ХХ века. История КЭ неразрывно связана с радиоспектроскопией, исследующей свойства вещества с помощью избирательного (резонансного) поглощения радиоволн СВЧ диапазона. Именно в радиоспектроскопии зародилась идея о том, что путём создания инверсии населённостей ...
0 комментариев