400 МГц. При длине резонатора I м в ОКГ мо­жет генерироваться на ^ = 0,6328 мкм до 10+12, на Л.=1,]5мкм - до 5-6 продольных типов колебаний.

Применяя специальные методы селекции типов колебаний (см. § 5 гл.17), можно получить генерацию в гелий-неоновом ОКГ на одной частоте.

Аргоновый ОКГ. В отличие от атомных ОКГ, к которым от­носится рассмотренный гелий-неоновый ОКГ и в которых используют­ся переходы между возбужденными состояниями атомов, в ионных ОКГ рабочий переход соответствует возбужденным уровням ионов. Ионный ОКГ в настоящее время - один из наиболее мощных газовых ОКГ, излучение которых лежит в видимой области спектра. Это связано с особенностями структуры энергетических уровней ионов и механизмом создания инверсии населенностей.

Инверсия населен— ностей в ионных ОКГ осуществляется газовым разрядом. Так как рабочими частицами в них являются ионы, то газовая плазма раз­ряда должна быть высокоионизированной. Поэтому в ионных ОКГ используется дуговой разряд, отличающийся повышенной степенью ионизации.

Характерным пред­ставителем ионных ОКГ служит аргоновый ионный ОКГ, наиболее изученный и разработанный в на­стоящее время. Давно на­лажен их промышленный выпуск.

Рассмотрим меха­низм возбуждения арго­новых ионных ОКГ. На рис. 83 приведена упрощенная диаграмма нижних состо­яний ионов аргона.В ос­новном.состоянии атом

Др имеет электрон­ную конфигурацию fs^Ss^p-Ss-S^6. Первое возбужденное

состояние атома Аг соответствует переводу одного из внеш­них электронов на 4 д -оболочку. При однократной ионизации получается конфигурация iss•г,sг•г.pGЗsг'Зp5, которой соответ­ствуют два уровня. Перевод одного из электронов с Зр -оболоч­ки иона аргона на оболочку ^ дает пять энергетических уров­ней, а возбуждение электрона с Зр -оболочки на 4р -оболочку ведет к образованию 13 уровней.

Генерация в аргонных ОКГ осуществляется на переходах меж­ду состояниями иона Аг''' с электронной конфигурацией Зр^4р и З/^з. Инверсия населенностей обеспечивается процессами сту­пенчатого электронного возбуждения и разным временем жизни верх­них и нижних рабочих уровней. В аргоновой плазме с большой эф­фективностью идет процесс образования возбужденных атомов и ио­нов посредством электронных соударений:

Далее повторные соударения с электронами приводят к образова­нию возбужденных ионов с электронными конфигурациями Зр^р и

Кроме того, рабочие уровни заселяются в результате ступенча­тых переходов через уровни состояний ионов с электронной кон­фигурацией 3p^d и Зр^д (эта система уровней на рис.83 не изображена).

Как показывают исследования, скорость заселения верхних и нижних уровней одинакова. Инверсия населенностей образуется лишь вследствие того, что время жизни уровней Зр^р примерно в 25 раз выше, чем время жизни уровней 3p^4s. Нижние рабочие уровни Зр^д опустошаются вследствие спонтанных переходов в основное состояние ионов с излучением в ультрафиолетовой ваку­умной области. Наибольшая инверсия населенностей получается для переходов ^ р ^^ -* 4s г?^.

На рис.84, о. приведена схема аргонового ОКГ. Он отличает­ся от гелий-неонового ОКГ лишь конструкцией газоразряцной труб­ки. Как уже отмечалось, в ионных ОКГ используется сильноточный дуговой разряд, обеспечивающий высокую степень ионизации газа. Для генерации необходима плотность тока разряда до нескольких сотен ампер на I см~. Разряд происходит в узкой капиллярной трубке 3 , охлаждаемой водой 1 . Рабочее давление аргона в раз­рядном капилляре устанавливается в несколько десятков паокалей. Электроды трубки должны быть рассчитаны на разрядные токи до сотен ампер и иметь высокую стойкость к электронной и ионной бомбардировке. Анод Ч обычно охлаждают водой. Часто применяют в таких ОКГ оксвдные катоды 5 . Хорошо зарекомендовали себя также импрегнированные катоды, представляющие собой пористую


вольфрамовую губку, пропитанную алюминатом бария или кальция. Такие катоды обладают большой удельной эмиссией, превышающей во много раз оксвдные катоды. Они не теряют своей эмиссионной способности при многократных нарушениях вакуума в трубке.

При мощном дуговом разряде происходит процесс перекачки газа от анодного конца трубки к катодному, в результате чего образуется перепад давления и разряд гаснет. Для выравнивания давления по длине капилляра катодную и анодную колбы соединя­ют обводным каналом 6 , обеспечивающим свободную циркуляцию газа.

Разрядный капилляр должен выдерживать высокие тепловые нагрузки (сотни ватт на квадратный сантиметр) и ионную бомбар­дировку. Капилляр часто выполняется из кварца. Он термостоек, имеет хорошие электроизоляционные свойства и устойчив к эро­зии. Изготовление разрядных трубок из кварца не представляет технологических трудностей. Обычно используют разрядные труб­ки диаметром до I5+20 мм и длиной от 10 см до несколь­ких метров. Существенный недостаток кварца - малая теплопро­водность . Она позволяет доводить плотность разрядного тока толь­ко до сотен ампер на I си2 в ОКГ непрерывного действия. Кварцевые капилляры пока не обеспечивают длительную работу ОКГ при больших мощностях. Срок службы кварцевых капилляров достигает нескольких сотен часов. При плотностях тока 500 А/см и более кварцевые капилляры практически непригодны для работа. В этом случае в качестве материала для разрядных капилляров использу­ют различную тугоплавкую керамику и анодированный алюминий.

Разрядные капилляры из керамики значительно долговечнее, обладают более высокой теплопроводностью, чем плавленный кварц.

Проблема создания стойких разрядных трубок для аргоновых ОКГ во многом решается путем использования секционированных разрядных трубок, состоящих из металлических шайб 7 тугоплав­кого материала (молибдена, тантала, графита, керамики из окиси берилия), разделенных диэлектрическими изоляционными кольцами 8 (из кварца, резины) (рис.84, (у). В ряде стран промышленно­стью выпускаются ОКГ с капиллярами из тугоплавких керамик и секционированными разрядными трубками мощностью 3+10 Вт и выше. Срок службы их достигает нескольких тысяч часов.

Многочисленные исследования ионных аргоновых ОКГ привели к оригинальному решению проблемы создания дугового разряда вы­сокочастотными поляки. На рис.85 приведена схема аргонового ОКГ с высокочастотным питанием < . Замкнутая кольцевая трубка 2 ОКГ служит как бы одновитковой вторичной обмоткой высокочас­тотного трансформатора 3 . Для питания используется генератор с частотой в несколько мегагерц. Высокочастотное возбуждение имеет следующие достоинства: снижается эрозия кварцевого капилляра, отсутствует жестчение газа, существенно уменьшаются шумы в излучении. Уменьшение эрозии, по-видимому, связано с тем, что ионы не успевают приобрести значительную скорость при движении в высокочастотном поле. В ОКГ с высокочастотным воз­буждением нет металлических электродов, что позволяет исполь­зовать в них химически активные газы (в таком разряде получе­на генерация на ионах мышьяка, брома, селена).

Практически в большинстве ионных аргоновых ОКГ использу­ется наложение внешнего продольного магнитного поля на разряд, приводящее к существенному увеличению мощности генерации. Маг­нитное поле создается соленоидами (см.^| на рис.84,а) или постоянными магнитами. Оно прижимает разряд к оси трубки,.уве-личивает концентрацию электронов в центре капилляра, уменьша­ет поток заряженных частиц на его стенки. Последнее уменьшает тепловые нагрузки на капилляр и увеличивает тем самым срок его службы.Напряженность магнитного поля имеет величину порядка 10° А/м.

Важное значение при эксплуатации и разработке аргоновых ОКГ имеет определение их оптимального режима работы, соответ­ствующего наибольшей выходной мощ­ности. Мощность генерации 'зависит от силы тока разряда, давления га­за, размеров разрядного капилляра, величины напряженности магнитного поля и т.д.

На рис.86 приведена зависи­мость выходной мощности ОКГ с раз­рядной трубкой диаметром 10 мм от давления аргона при разных величи­нах разрядного тока. Из рисунка видно, что существует оптимальное давление, соответствующее макси­мальной мощности. При малых давле-ниях концентрация ионов незначительна и мощность излучения оказывается небольшой. При больших давлениях концентрация ио­нов велика, но мала длина свободного пробега электронов и, сле­довательно, мала их энергия. Это ведет к снижению эффективно­сти возбуждения ионов при соударениях с электронами, вследст­вие чего инверсия, а значит, и мощность излучения получаютсянезначительными. Величина оптимального давления зависит от ди­аметра разрядной трубки. Она растет с уменьшением диаметра. Экспериментально установлено, что величина оптимального дав­ления рот в зависимости от диаметра трубки d определяется при jd = 100 А/см ( j - плотность тока разряда) соотношением Ропт = 6,5ct ~^, здесь d выражено в сантиметрах. Для реаль­но используемых трубок d = 0,1+1,5 см, ру^ = 100+4 Па.

Мощность генерации при токах выше порогового значения растет пропорционально квадрату силы тока. Квадратичная зави­симость мощности от тока характерна для всех аргоновых ОКГ. Она объясняется ступенчатым процессом механизма возбуадения ионов из основного состояния атомов. Лишь при очень больших плотностях тока ('>1000 А/см^) мощность излучения с увеличе­нием силы тока перестает расти, наступает насыщение и далее мощность уменьшается. Однако такого режима трудно достигнуть из-за разрушения разрядных капилляров. Насыщение мощности из­лучения с ростом оиды тока, по-ввдимому, связано с эффектом пленения излучения. Инверсия населенностей, как было уже по­казано, в аргоновых ОКГ обеспечивается в результате опустоше­ния нижнего рабочего уровня 3^48 интенсивными спонтанными переходами ионов в основное ионное состояние. Спонтанное из­лучение, распространяясь в плазме, частично поглощается не-возбухденными ионами, что приводит к переводу их с уровня Зр^ на уровень Зр4 4s. При большой концентрации ионов каждому спонтанному переходу Зр 4з •— Зр соответствует акт поглоще­ния, ведущий к возвращению иона в возбужденное состояние 3^45. Происходит как бы увеличение эффективного времени жизни час­тиц в Зр^д -состоянии, что ведет к уменьшению инверсии насе-ленностей и, как следствие этого, падению мощности генерации. Удельная мощность генерации вблизи режима насыщения достигает 2,5 Вт/см.

Большой практический интерес представляет зависимость мощ­ности генерации от диаметра разрядной трубки (рис.87). Из ри­сунка видно, что удельная мощность генерации растет с увели­чением диаметра разрядной трубки. Поэтому для получения боль­шой мощности выгоднее использовать разрядные трубки увеличен­ного диаметра (до 10+15 мм). Однако при этом встречаются труд­ности в получении равномерного разряда по всей площади трубки, требуются мощные катоды, обеспечивающие большие токи эмиссии (до сотен ампер).


В настоящее время с трубками диаметром 10 + +15 мм в аргоновом ОКГ достигнута мощность генерации 500 Вт.

При создании мощных аргоновых ОКГ возникают существенные трудности, связанные с распылением электродов и стенок разряд­ных трубок. Распыленные частицы, оседая на брюстеровы окна (или на внутренние зеркала), образуют поглощающий слой. В результа­те абсорбции излучения в поглощающем слое происходит термиче­ская деформация оптических элементов, что приводит к значитель­ной расходимости луча и падению выходной мощности. Поглощающий слой на поверхности окон и разрушение отражающих слоев зеркал резонатора полем излучения большой мощности являются основными препятствиями, которые ограничивают рост мощности аргоновых ОКГ непрерывного действия.

Существенное влияние на выходную мощность аргоновых ОКГ оказывает также аксиальное магнитное поле. Наложение продоль­ного магнитного поля приводит к спиральному движению электро­нов и ионов вокруг магнитных_силовых линий, что снижает ради­альную диффузию к стенкам капилляра, увеличивая концентрацию их на оси трубки. Уменьшение ионной бомбардировки облегчает тепловую нагрузку на стенки разрядной трубки и увеличивает срок ее службы. Экспериментальные исследования показывают, что с рос­том напряженности магнитного поля выходная мощность ОКГ увели­чивается, достигая максимума при некотором оптимальном значе­нии напряженности, а затем падает.

Рис.88 иллюстрирует зависимость мощности генерации от ве­личины напряженности магнитного поля при различных давлениях газа ОКГ с капилляром диаметром 4 мм, длиной 28 см, при силе тока 30 А. Видно, что с ростом давления ^/опт уменьшается. Ве­личина оптимальной напряженности также зависит от силы тока и диаметра разрядного капилляра. С ростом силы тока и давления hq „т уменьшается. Оптимальная, величина напряженности магнит­ного поля лежит в диапазоне от нескольких десятков тысяч до (2*3)- 1СГ3 А/м. Исследования показывают, что падение мощности генерации при полях напряженностью, большей оптимальной, когда образуется значительная концентрация заряженных частиц на оси разрядной трубки, связано главным образом с эффектом пленения резонансного излучения и ростом числа тушащих соударений ионов с электронами, приводящими к безызлучательной дезактивации верх­них рабочих уровней.

Как уже отмечалось, инверсия йаселенностей в дуговом арго­новом разряде обеспечивается для систем уровней, соответствую­щих электронным конфигурациям Зр 4р и Зр4S ионов аргона.По­тому при выполнении пороговых условий в аргоновом ОКГ мэхвт воз­никнуть генерация когерентного излучения на целом раде перехо­дов этой системы уровней.

В аргоновых ОКГ генерация наблидается на многих длинах волн, лежащих в пределах от фиолетовой (450 нм) до зеленой (530 мн) области. Наиболее интенсивная генерация идет на линии 488 нм, отвечающей переходу ^pгDocln — ^s^Pw • Незначитель­но ей уступает по интенсивности генерация на переходе ^Р^ю— — Чв^^с длиной волны 514,5 нм. В линиях 488 и 514,5 нм мо­жет заключаться соответственно до 45 и У?% общей мощности ге­нерации. Для этих линий обеспечиваются наибольшие величины ин­версии населенностей и соответственно большие коэффициенты уси­ления. Измерение усиления для ОКГ с капилляром 0,5 см при дав­лении 10 Па и плотности тока 600 А/см для перехода о А, = = 488 нм дает величину I3-IO"3 см"1, для перехода с A=5I4,5i»i-примерно 3,6-Ю"3 см"1.

Следующей по интенсивности после линий 488 и 514,5 нм яв­ляется линия 496 либо 476 нм, на которую приходится около 6% полной выходной мощности. При небольших превышениях тока над пороговым значением генерация происходит на переходе ^Р^то---••^-^м. Линия усиления имеет доплеровское уширение, и полная ширина спектра генерации достигает 10 ГГц, превышая ширину спек­тра Не-Ne ОКГ в 4-5 раз. Последнее объясняется, во-первых, тем, что рабочие частицы в аргоновой плазме имеют значительно боль­шую скорость, чем атомы неона в смеси Не-Me, и, во-вторых, бо­лее высоким избыточным усилением (превышением усиления над по­терями в резонаторе). Для обеспечения генерации на отдельных переходах из системы рабочих уровней электронных конфигураций Зр 4р и 3p-4s необходимо использование селективных элементов в ОКГ (призм, дифракционных решеток).

Оптический квантовый генератор на углекислом газе


Относится к груп­пе газовых лазеров, в которых используются переходы между ко­лебательно-вращательными состояниями молекул. В настоящее вре­мя осуществлена генерация на кодебательно-врашательных перехо­дах многих молекул: СО , ti^O ,НуО , СО^ и т.д. Лучшие результа­ты получены с ОКГ на COq . Они являются самыми мощными из всех газоразрядных ОКГ, работающих в непрерывном режиме, и имеют высокий коэффициент полезного действия, достигающий 20 т 30%.

Рассмотрим механизм создания инверсии населенностей в ОКГ на углекислом газе. Инверсия наоеленностей в таких ОКГ осуще­ствляется посредством газового разряда. Прежде чем рассматри­вать вопрос о механизме генерации, приведем некоторые данные о молекуле СО^ и ее уровнях. Молекула COn - линейная симметрич­ная молекула. Она имеет три нормальных типа колебаний: валент-ное полносимметричное (^ ), деформационное ( ^ ) и валентное антисимметричное (^д) (рис.89). Деформационные колебания яв­ляются дважды вырожденными, так как колебания с одной и той же частотой могут происходить в двух ортогональных плоскостях, проходящих через ось молекулы. Колебательное состояние молеку­лы описывается тремя квантовыми числами и, , Vn и ^з • каждое из которых представляет число возбужденных квантов колебаний г>! ' ^2. • "^З • Соответствующие уровни обозначаются комбинацией квантовых чисел (^ ,и^ , v^ ). Квантовое число t , записываемое. в виде индекса, обусловлено двукратным вырождением дефор­мационного -

колебания. Оно принимает значения ^"1^,0^-2,..., О для четных и, и I « Do, Uo-1,..., 1 Для нечетных и определяет значение момента количества движения Р^ = /г.^/(2Х), связанно­го с колебаниями в направленного вдоль оси молекулы. Уровни с Ь = 0 являются невырожденными, с Ь > 0 - дважды вырожденны­ми. При и, > I вследствие ангармоничности колебаний СО^ вы­рождение снимается. На рис.90 дана схема нижних колебательных уровней молекул СОп .

Для эффективного заселения верхнего рабочего уровня мо­лекул СО в в рабочую трубку ОКГ вводят азот..Так как Ng — двухатомная молекула, то она имеет только одну колебательную степень свободы. Ее колебательная энергия определяется кван­тами энергии, обусловленными колебаниями атомов вдоль оси мо­лекулы. Соответственно колебательные уровни энергии молекулы азота описываются одним колебательным квантовым числом v . На рис.90 приведена также система нижних колебательных уровней молекул No. Весьма примечательно то, что энергия первого воз­бужденного колебательного уровня молекулы Nn почти равна энер­гии уровня (00°1) молекулы СОр . Разница энергии состояний (00°1) молекулы СОр и ( о =1) молекулы Nn составляет всего 0,0023 эВ.

Генерация в ОКГ на СО^ осуществляется на переходах (DO0!)-—(П^О) и (00°I) — (02°0). Наиболее интенсивная генерация идет на переходе (00°1) — (ГС°0) с длиной волны около 10,6 мкм, которая подавляет почти полностью генерацию на длине волны 9,6 мкм (00°1) -.(02°0).

Возбуждение верхнего рабочего уровня (00°1) обусловлено несколькими процессами. Основной процесс возбуждения связан с неупругими соударениями молекул N^ с СО^ , что ведет к резо­нансной передаче колебательной энергии от молекул азота к мо­лекулам углекислого газа:

В газовом разряде электронные соударения приводят к эф­фективному образованию колебательно-возбужденных молекул Nn (v = I) (до 30% общего числа молекул Nn). Так как молекула азота состоит из двух одинаковых атомов, то ее дипольный мо­мент равен нулю, поэтому дипольное излучение отсутствует и разрушение возбужденных колебательных состояний происходит только в результате столкновений. Вследствие почти полного со­впадения уровней энергии первого колебательного уровня {и = I) молекул No и уровня (00 I) СОр соударения возбужденных моле­кул No с молекулами СОп , находящимися в основном состоянии, ведут к селективному заселению верхнего рабочего уровня (00 I) СО^ .

Существенную роль в заселении верхнего рабочего уровня играет резонансная передача колебательной энергии от молекул СО молекулам СОр . В газовом разряде благодаря диссоциации мо­лекул СОо образуется значительное количество молекул СО , ко­торые при соударениях с электронами интенсивно переводятся в колебательно-возбужденное состояние. Первый возбужденный ко­лебательный уровень молекулы СО почти совпадает с верхним ра­бочим уровнем (00 Г) молекул СОр. Благодаря этому происходит процесс резонансной передачи колебательной энергии от молекул СО (так же, как от молекул Nn ) молекулам СОр:

Этот процесс - один из основных в заселении верхнего рабочего уровня ОКГ на чистом СОр .

Верхний рабочий уровень (00°1) дополнительно заселяется благодаря процессу неупругого соударения молекул двуокиси уг­лерода и электронов:

со-(ооо) + ё — со (оо° Пло-скопараллельные пластины брюстеровских окон (.5) газоразрядных трубок делают из NuCL , KCL , Ge , SL , -прозрачных в области 9+11 мкм. Используют зеркала с металлическими или интерферен­ционными диэлектрическими отражающими покрытиями. Подложки зер­кал для ОКГ небольшой мощности (порядка I Вт) делаются из квар­ца. Наилучшим материалом при высоких уровнях мощности для под­ложек зеркал и для брюстеровских окон является иртрай, пред­ставляющий собой прессованный поликристалл ZnSe . Для вывода излучения из ОКГ в зеркалах с металлическими отражающими по­крытиями делается небольшое отверстие" - окно (диаметром несколь­ко миллиметров). Коэффициент пропускания выходных зеркал с ди­электрическими покрытиями имеет величину 10 т 30%.

Разрад в рабочей смеси газов сопровождается диссоциацией и изменением исходного состава газа. Поэтому очень часто, осо­бенно в мощных ОКГ, используется непрерывная прокачка газа (б) через разрядную трубку.

Рассмотрим основные характеристики ОКГ на COg . На рис.92 показана зависимость выходной мощности от силы тока разряда паи различных давленяях СОп для ОКГ с отпаянной трубкой длиной I м и диаметром 10 мм. Сначала мощ­ность возрастает вместе с то­ком, а затем падает. Такая за­висимость объясняется конку­ренцией двух факторов. Увели­чение концентрации электронов, о одной стороны, ведет к воз­растанию скорости возбуждения молекул СОп на уровень (00^1), а с другой,- повышает газовую температуру, что увеличивает ^ скорость разрушения антисимме-- тричных колебаний молекул.

Значительное увеличение мощности генерации дости­гается добавлением к СО^ азота.

Рис.93 иллюстрирует влияние введения азота в разрядную трубку на мощность и КПД ОКГ на СОп • При добавлении азота благодаря резонансной передаче колебательной энергии от молекул Nn анти­симметричному типу колебаний СОо инверсия населенностей. а сле­довательно, и мощность растут. Однако по мере введения N^ по­вышается температура газа, что приводит к увеличению скорости релаксации уровня (00°1), уменьшению его заселенности, а также росту населенности нижнего лазерного уровня (Ю°0). Поэтому ин­версия населенностей снижается и мощность падает.

Существенное влияние на энергетические характеристики ОКГ на COp-Nn оказывает введение в разрядную камеру гелия (рис.94)1 Гелий, обладая теплопроводностью, в несколько раз превышавшей теплопроводность СОв^ и Nn, снижает газовую температуру, что способствует увеличению инверсной населенности, а значит,и вы­ходной мощности. Кроме того, с введением в разряд гелия воз­



растает возбуждение ко­лебательных уровней мо­лекул СО- , Мд и СО . Однако при больших пар­циальных давлениях ге­лия в газовой смеси мощ­ность генерации падает, так как уменьшается на­селенность верхнего ла­зерного уровня (00°!) из-за релаксации анти­симметричных колебаний молекул СОр при столк­новениях COn-He . Мощ­ность генерации также повышается при введе­ния в разряд паров воды.

Оптимальный состав рабочей смеси газов в ОКГ на СОр зависит от размеров разрядной труб­ки, температуры ее сте­нок, скорости прокачки смеси и т.д. Обычно ис­пользуются смеси угле­

кислого газа, азота и гелия в соотношении 1:1+5:3*8 при общем давлении порядка I03 Па. Удельная мощность генерации достигает I Вт на I см разряда газовой смеси. Типичный ОКГ на углекислом газе при длине разрядной трубки 200 см дает непрерывную мощ­ность около 150 Вт. Увеличение длины разрядной трубки ведет к примерно пропорциональному росту мощности. Таким путем удается создать ОКГ на углекислом газе с выходной мощностью больше I кВт. На уникальной установке с длиной разрядного канала ВО м была получена мощность генерации около 9 кВт.*



‘®®ЎйҐ­ЁҐ Ї® ¬Ґв®¤ЁЄ дЁ§ЁзҐбЄ®Ј® нЄбЇҐаЁ¬Ґ­в 
Џѓ“ Ё¬. ’.ѓ. ?ҐўзҐ­Є® Ј. ’Ёа бЇ®«м
ЋЏ’?—…‘Љ?… Љ‚ЂЌ’Ћ‚›… ѓ…Ќ…ђЂ’Ћђ›
Информация о работе «Оптические квантовые генераторы»
Раздел: Физика
Количество знаков с пробелами: 58528
Количество таблиц: 0
Количество изображений: 20

Похожие работы

Скачать
17187
2
10

... между вероятностями соот­ветствующих переходов приводит к преимущественному заселению верхнего рабочего состояния и возникновению инверсии.                                           Активный элемент рубинового ОКГ.   Первым оптическим квантовым генератором был гене­ратор, в котором в качестве активного элемента исполь­зовался искусственный кристалл рубина. Рубино­вый ОКГ и ...

Скачать
91435
1
22

... неоднородность имеет значительную глубину. Прибор интерференционно-теневой ИАБ-458 Прибор интерференционно-теневой ИАБ-458 предназначен для качественных и количественных исследований теневым методом неоднородностей оптически прозрачных сред. В приборе реализуются следующие методы исследования: светящейся точки, щели и ножа, щели и нити, сдвиговой интерферометрии и голографии. На рис. 2.4 ...

Скачать
16035
0
4

... установленными друг против друга. Эти зеркала имеют серебряное либо диэлектрическое отражающее покрытие, состоящее из нескольких слоев диэлектриков, каждый из которых обладает различными оптическими характеристиками. Серебряное покрытие по сравнению с диэлектрическим обладает меньшим коэффициентом отражения и большими потерями. В процессе эксплуатации серебряные покрытия портятся и требуют замены ...

Скачать
18049
1
0

... эффект насыщения). Историческая справка. КЭ сформировалась и развивалась как самостоятельная область науки и техники во вотрой половине ХХ века. История КЭ неразрывно связана с радиоспектроскопией, исследующей свойства вещества с помощью избирательного (резонансного) поглощения радиоволн СВЧ диапазона. Именно в радиоспектроскопии зародилась идея о том, что путём создания инверсии населённостей ...

0 комментариев


Наверх