Поверхневі напівпровідникові хвилі в напівпровідникових структурах

19744
знака
0
таблиц
41
изображение

Міністерство освіти України

Національний педагогічний університет

ім. М.П.Драгоманова


Курсова робота з загальної фізики на тему:


“Поверхневі електромагнітні хвилі в напівпровідникових кристалах.”


Київ - 1998


План.

Вступ.

Теорія оптичних констант.

Що таке “Поверхневий поляритон”.

Основи методу ППВВ.

Дослідження структури ZnO на сафірі методами ІЧ спектроскопії.

Поверхневі поляритони в стуктурі ZnO на сафірі.

Висновки.

Застосування матеріалів роботи в середній школі.

Список використаної літетатури.


Вступ.


Одним з перспективних напрямків сучасної фізики є дослідження поверхні твердого тіла та взаємодії поверхневих електромагнітних хвиль інфрачервоного діапазону з поверхнею та тонкими шарами напівпровідників . Поверхня впливає на ефективність роботи напівпровідникових приладів. З різними аспектами фізики поверхні пов`язані проблеми створення плівочних елементів, нанесення зміцнюючого покриття, міцності, коррозії, адсорбції та ін.

При взаємодії світлової хвилі з поверхнею твердого тіла виникає поверхнева електромагнітна хвиля. Слід зауважити , що під поверхневою електромагнітною хвилею розуміють хвилю, максимум якої знаходиться на поверхні твердого тіла і амплітуда поля якої зменшується по експоненціальному закону при віддаленні від межі розподілу середовищ. Квазічастинки, які відповідають цим коливанням, що мають змішаний електромагнітно-механічний характер, називають поверхневими поляритонами (ПП). Не зважаючи на екзотичну назву, ці хвилі можуть бути знайдені в рамках феноменологічної електродинаміки як роз`вязки рівнянь Максвелла для межі двох середовищ . Дисперсія таких поверхневих хвиль в кристалі визначається залежністю його діелектричної проникності від частоти падаючого світла. Під фононом розуміють квазічастинку , що відповідає механічним коливанням решітки, тобто періодичним зміщенням атомів відносно положення рівноваги. Плазмон - це теж квазічастинка, але вона описує коливання вільних електронів навколо важких іонів. При деяких умовах плазмони та фонони можуть взаємодіяти.

Фотони при зіткненні з ідеально гладкою межею розділу не взаємодіють або “не бачать” поверхневі поляритони на цій межі. Якщо ж поблизу поверхні покладено призму, або сама поверхня шорохувата, чи на неї нанесена дифракційна решітка, то поверхневі поляритони можуть збуджуватись падаючим фотоном. Ці явища покладено в основу дослідження поверхневих хвиль. Такими методами є :

метод модифікованого багатократного порушеного внутрішнього відбивання ;

метод модифікованого повного внутрішнього відбиття;

метод комбінаційного розсіяння світла.


Зараз розроблено ефективні методи дослідження структури поверхні. В них використовується розповсюдження в кристалах світлових хвиль з певними значеннями частоти та хвильового вектора. Порівняння залежності , отриманої з рівнянь Максвела, з експериментально отриманою дисперсією хвиль, що розповсюджуються в кристалах , дає можливість отримувати інформацію про спектр поверхневих збуджень середовища.

Вибір карбіда кремнію в ролі одного з матеріалів для експериментальних досліджень обумовлений перспективою його використання в напівпровідниковій мікроелектроніці. Дійсно, прилади на основі карбіду кремнію, завдяки його унікальним фізико-хімічним властивостям, можуть використовувати в таких галузях науки і техніки, де потрібна підвищена надійність, радіаційна стійкість, робота при високих температурах.

Електрофізичні властивості карбіду кремнію відчутно залежать від конкретного політипу. Зараз відомо понад 200 модифікацій карбіду кремнію.

Позначення політипів в символах Рамсделла складається із цифри, що позначає число шарів вздовж осі С, та букви Н або R в залежності від типу кристалу - гексагонального чи ромбоедричного.

Найбільш часто зустрічаються політипи SiC 6H, SiC 15R та SiC. Вони являються хорошими модельними кристалами для дослідження ПП, а також впливу різних поверхневих обробок на властивості ПП. Окрім цього, ідеальні кристали карбіду кремнію та епітаксіальні шари SiC на діелектричних підкладинках є перспективними для використання їх в мікроелектроніці та в інтегральній оптиці.


1. Теорія оптичних констант.


Розповсюдження пучка променів в напівпровідниковому кристалі може бути описане розв`язком рівнянь Максвелла :

, (1.1)

В другому рівнянні системи , на відміну від діелектриків, врахована густина струму провідності , оскільки більшість напівпровідників по електричним властивостям ближчі до металів, ніж до діелектриків.

В загальному випадку питома електропровідність , діелектрична та магнітна проникності (відносні величини, що є функціями частоти) напівпровідника є анізотропними та представляються тензорами другого (або вище) рангів.

Оскільки

,

то:


Але а grad(div), тому

(1.2)

Аналогічне рівняння можна отримати і для вектора напруженості магнітного поля .

Одним із можливих розв`язків рівняння (1.2) для вектора напруженості електричного поля є

(1.3)

Це рівняння являє собою хвилю, що розповсюджується в напрямі z зі швидкістю v, - кутова частота. Розв`язок (1.3) задовольняє (1.2) при умові

(1.4) а це задовольняє комплексному показнику заломлення


(1.5)

Враховуючи те, що квадрат швидкості поширення світла у вакуумі , а також ту обставину, що в оптичному діапазоні більшість напівпровідників володіють слабкими магнітними властивостями, тобто співввідношення між головним показником заломлення n , головним показником поглинання k, з однієї сторони та діелектричної проникності , питомої електропровідності - з іншої , приймає вигляд

(1.6)

або після розділення дійсної та уявної частини

, (1.7)

Тут - комплексна діелектрична проникність, в котрій по аналогії з n i k, - дійсна частина, а - коефіцієнт при уявній частині. Спираючись на умову причинності можна записати формули, що пов`язують n i k одне з одним :

З першої формули n можна підрахувати для будь-якої частоти в інтервалі від нуля до нескінченності, а значить на основі спектру поглинання може бути підрахований спектр показника заломлення і навпаки. Подібним чином можуть бути записані співвідношення, які пов`язують та

(1.8)

. (1.9)

Це співвідношення Крамерса-Кроніга.


Тепер, підставивши (1.4) та (1.5) в (1.3), знайдемо

, тут видно, що головний показник поглинання k характеризує затухання електромагнітної хвилі в напівпровіднику. Оскільки енергія хвилі пропорційна квадрату амплітуди , то для характеристики поглинання речовини часто застосовують замість величину

, (1.10)

це коефіцієнт поглинання , чисельно рівний оберненій товщині шару напівпровідника, в якому інтенсивність електромагнітної хвилі зменшується в e раз. Крім головного показника поглинання


, (1.11)

рівного по величині , згідно формули (1.5) , уявній частині комплексного показника заломлення , при деяких механізмах взаємодії електромагнітної хвилі і речовини можуть виникати особливі енергетичні витрати , котрі виражають формулою

, (1.12)



Информация о работе «Поверхневі напівпровідникові хвилі в напівпровідникових структурах»
Раздел: Физика
Количество знаков с пробелами: 19744
Количество таблиц: 0
Количество изображений: 41

Похожие работы

Скачать
40780
0
4

... ією носіїв заряду, що забезпечують велику холівську напругу. Для виготовлення магнітоелектричних приладів використають арсенід індію й телурид ртуті. Термоелектричні прилади виготовляють із напівпровідникових матеріалів, що забезпечують максимальний коефіцієнт ефективності, тобто які мають високу і низьку теплопровідність. Такими властивостями володіють антимонід цинку телурид і селенід вісмуту ...

Скачать
44205
3
12

... ій зоні. Для тіл, у яких ширина забороненої зони не перевищує 1 еВ, уже при кімнатній температурі в зоні провідності виявляється достатнє число електронів, а у валентній зоні – вакансій, щоб обумовити відносно високу електропровідність. Такі тіла звичайно називають напівпровідниками. Звідси стає ясним, що розподіл твердих тіл другої групи, на діелектрики й напівпровідників є чисто умовним. У ...

Скачать
191192
6
39

... принтера також містить різні мови опису даних (Adobe PostScript, PCL і тощо.). Ці мови знову ж таки призначені для того, щоб забрати частину роботи у комп'ютера і передати її принтеру. Розглянемо фізичний принцип дії окремих компонентів лазерного принтера. 2.5.29 Фотобарабан Як вже писалося вище, найважливішим конструктивним елементом лазерного принтера є фотобарабан, що обертається, за ...

Скачать
64175
1
2

... , збільшення глибини р+рп-переходу приводить до збільшення тривалості фази ВЗП і зменшенню тривалості ВЗО, оскільки до моменту утворення ООЗ значна частина заряду виявляється виведеною з діода. Саме така конструкція р+р-переходу надалі використовувалася у всіх потужних наносекундних діодних розмикачах. Як вже відзначалося вище, присутність електронно-діркової плазми на зростаючій границі ООЗ, ...

0 комментариев


Наверх