4. Практическое использование эффекта в функциональной электронике

Изготовление акустической интегральной схемы на поверхности пьезоэлектрического звукопровода включает в себя следующие этапы:

— изготовление фотошаблона;

— металлизация рабочей поверхности звукопровода;

— изготовление самой схемы с помощью фотолитографии.

Рассмотрим подробнее каждую из отмеченных операций. Изготовление фотошаблона следует за расчетами самой схемы по заданным параметрам акустоэлектронного устрой­ства. Начинается изготовление фотошаблона из вычерчива­ния изображения координатографом, который вырезает на нанесенной на прозрачную основу непрозрачной пленке конту­ры изображения. После удаления ограниченных замкнутым контуром участков на пленке получается изображение, соот­ветствующее многократно увеличенному изображению струк­туры акустоэлектронного устройства. Рабочее поле координа­тографа позволяет вычерчивать первичный оригинал с раз­мерами до 1000X1000 мм. Минимальный размер элемента — 0,2—0,5 мм, точность положения — 0,01 мм. Большое развитие получили автоматические координатографы с программным управлением. В комплексе с электронно-вычислительной машиной программный координатограф позволяет автоматизировать все операции, существующие между выдачей исходных данных на конструкцию акустоэлектронного устройства и получением первичного оригинала.

Дальнейшим этапом является изготовление промежуточного фотошаблона, который создается пересъемом вычерченного на координатографе первичного оригинала.

Эта пересъемка осуществляется на различных редукционных камерах, которые обеспечивают уменьшение первичного изображения в 5—60 раз. Съемки выполняются на высококачественных фотопластинках.

Наряду с вариантом технологического цикла изготовлений промежуточного шаблона, включающем вычерчивание первичного оригинала и пересъем его на редукционной камере, существует и другой вариант, использующий процесс фотонабора. Практически операция фотонабора сводится к формированию изображения непосредственно в размерах промежуточного фотошаблона. Все изображение при этом разбивается на элементарные прямоугольники с различными раз­мерами и ориентацией.

 В фотонаборной установке (генераторе изображения) имеется наборная диафрагма, расположенная в предметной плоскости объектива. Световой поток от лампы вспышки через конденсорную систему линз падает на наборную щелевую диафрагму. Ширина, длина и угол поворота щели диафрагмы изменяются с помощью трех управляющих элек­тродвигателей, которые приводят в движение две подвижные пластины диафрагмы. Световой поток, прошедший диафраг­му, фокусируется высокоразрешающим объективом на фото­пластинку, расположенную на координатном столе. Коорди­натный стол с помощью двух серводвигателей перемещается по осям X и У. Таким образом, световое пятно, соответству­ющее выбранной диафрагме, проектируется с уменьше­нием в нужное место на фотопластине. Известные фотона­борные установки хорошо стыкуются с ЭВМ, что позволяет значительно упростить технологический цикл изготовления шаблона.

В дальнейшем изготовляют рабочий фотошаблон. Метод последовательного уменьшения предполагает 2—3 этапа уменьшения первичного оригинала в процессе пересъема. Второй этап может быть совмещен с мультишцированием изображения. При этом уже при пересъеме получают окон­чательный (рабочий) фотошаблон.

Этот метод получения рабочего шаблона применяется при невысоких требованиях к изображению: минимальный раз­мер элемента — 5—7 мкм, точность положения элемента — 2—5 мкм. Прецизионные же «высокочастотные» фотошаб­лоны проходят еще один обязательный этап уменьшения, осуществляемый с помощью вторичного пересъема. Устрой­ства, осуществляющие вторичную пересъемку, получили на­звание фотоповторителей или мультипликаторов. Для акустоэлектронных устройств это означает размещение на фото­шаблоне различных изображений, соответствующих преобра­зователям, суммирующим шинам, отражательным структу­рам и другим элементам. Для реализации требуемой струк­туры на звукопроводе создается либо комплект рабочих шаб­лонов, либо один сложный шаблон, содержащий полное изо­бражение всей структуры. Шаблоны комплекта снабжаются метками для последующего совмещения.

Независимо от выбранного метода последующей фотоли­тографии на поверхность звукопровода должно быть нане­сено проводящее покрытие. Металлизация рабочей поверх ности звукопровода производится чаще всего вакуумным спо­собом. К металлической пленке на рабочей поверхности зву­копровода предъявляются следующие требования: малая толщина (<0,1—0,5 мкм), равномерность слоя, высокая электрическая проводимость, минимум микродефектов (ца­рапин, непокрытых участков) и т.д. Наиболее распространен­ными материалами, используемыми для металлизации рабо­чей поверхности звукопровода, являются алюминий, золото и медь. Встречно-штыревые преобразователи, изготовленные из алюминия с подслоем ванадия, успешно работают на звукопроводах из кварца и ниобата лития. Медное или зо­лотое покрытие с подслоем хрома хорошо сочетается с германатом висмута. Пленки металла могут быть получены несколькими путями:

а) испарением металла с нагретой проволоки или тигля;

б) испарением металла с тигля, разогретого электронным лучом;

в) высокочастотным распылением.

При выборе технологии осаждения учитывают толщину требуемой пленки, допустимую степень нагрева подложки,, расход материала, направленность потока материала при распылении. Последний фактор весьма существенен при полу­чении проводящей структуры осаждением металла через окна в защитном рельефе фоторезиста.

Сама фотолитография — процесс, в результате которого образуется рельеф заданной формы в металлических плен­ках или диэлектрических материалах. В основе этого про­цесса лежит свойство некоторых высокомолекулярных сое­динений формировать под действием света устойчивый к травителям рельеф. Различают негативный и позитивный фоторезист. При негативном процессе в результате прояв­ления удавляются незасвеченные участки, а при позитивном-засвеченные. Оставшийся после проявления фоторезист слу­жит для получения изображения либо на покрывающей под­ложку проводящей пленке, либо непосредственно на поверх­ности звукопровода. Процесс фотолитографии содержит сле­дующие операции:

— нанесение слоя фоторезиста на подложку;

— экспонирование фоторезиста;

— проявление изображения на фоторезисте;

— получение изображения элементов акустоэлектронного устройства на поверхности звукопровода.

Нанесение фоторезиста на подложку выполняется раз­личными методами: пульверизацией, «центрифугированием», вытягиванием. Так как подложка акустоэлектронных уст­ройств характеризуется существенным неравенством сторон, то наиболее часто используется нанесение фоторезиста ме­тодом погружения подложки в фоторезист и вытягивания ее с определенной скоростью,,

Рабочий шаблон непосредственно экспонируется на по­верхность звукопровода, покрытого фоточувствительным сло­ем. При проекционной печати чаще всего для переноса изо­бражения применяется оптическая система с определенным уменьшением. Контактная печать осуществляется экспони­рованием изображения от находящегося в непосредственном контакте со звукопроводом рабочего фотошаблона. Принци­пиальной разницы между двумя методами практически нет однако, следует заметить, что проекционная печать может осуществляться одновременно с многократным уменьшени­ем изображения. В контактной печати такой возможности нет, поэтому требования к фотошаблону значительно выше.

С помощью фотолитографии наиболее часто необходимо получать проводящую структуру на поверхности диэлектри­ческого звукопровода. Существует два варианта этого про­цесса. В одном из них используется вакуумное напыление металлической пленки на рельеф резиста с последующим удалением резиста. В этом случае проводящая структура образуется на местах, свободных от резиста после проявле­ния (негативная структура — рис. 5.5.1).

В другом известном методе необходимый рисунок на ме­талле получают химическим травлением металла через за­щитный слой фоторезиста (позитивная структура). На под­ложку 1 (рис. 5.5.2) осаждается пленка металла 2, которая: покрывается слоем фоторезиста, образующего при фото­литографии защитный рельеф 3, соответствующий требуемой структуре изображения.

Трапецевидная форма сечения резистивного рельефа об-; разуется из-за расхождения светового потока при экспони­ровании и подтраве при проявлении. В результате травле­ния металлическая пленка остается лишь на участках, за­щищенных фоторезистом, после удаления которого на под­ложке остается лишь проводящая структура.

Химическое травление позволяет получать линии шири­ной не менее 4—5 мкм. Ионное травление позволяет свести эту величину к 1—2 мкм. Промывка подложки с полученным на ней проводящимрельефом завершает изготовление блока акустоэлектронного устройства. Затем следуют операции предварительного кон­троля, установки в корпус, приварки выводов и окончатель­ного контроля механических и электрических параметров.

Практическое воплощение конструкции устройств на УПЩ связано с разработкой технологических процессов их изготовления, которые, хотя и основываются на базовых процесса микроэлектроники, но имеют свои специфические особеннос­ти. В частности, они должны обеспечивать на порядок более высокую точность выполнения рисунка встречно-штыревых преобразователей устройств на УПВ, обработку поверхностей
пьезоподложек с высокой чистотой и плоскостностью, высококачественное напыление пленок материалов с разными физико-химическими свойствами. Первым важным этапом при конструировании акустоэлек­тронных устройств на УПВ является выбор материала под­ложки. Хотя в настоящее время существует много пьезоди-электриков, однако наиболее часто употребляются монокрис­таллический кварц, ниобат лития, германат висмута и поля­ризованная пьезокерамика горячего прессования или горя­чего литья. Материал подложки до некоторой степени опре­деляет технологическую схему изготовления акустоэлектронного устройства. Эта схема всегда включает в себя такие основные этапы:

— изготовление звукопровода;

—   изготовление фотошаблона согласно расчетам;

—   изготовление акустической интегральной схемы;

— монтаж устройства.

Специфика конструкции акустоэлектронных радиокомпо­нентов накладывает отпечаток на структуру операций прак­тически всех этапов технологического процесса. Широкий набор материалов, применяемых для изготовления звукопро­вода, требует гибкости механической обработки. Фотошаб­лоны акустоэлектронных структур по размерам могут в не­сколько раз превышать размеры фотошаблонов ИС при бо­лее сложной структуре изображения.

Металлизация звукопроводов акустоэлектронного устрой­ства связана с рядом сложных технических проблем. Во-первых, это обеспечение адгезии металла покрытия с мате­риалом звукопровода. Само нанесение металла на поверх­ность звукопровода большой длины требует создания и освое­ния новых технологических приемов и операций. Те же труд­ности возникают и при нанесении фоторезиста на звукопроводы больших размеров. Совмещение шаблона со звукопрово-дом произвольной формы и экспонирование изображения также затруднены произвольными формами звукопроводов. В процессе травления металлической пленки недопустимо подтравливание рабочей поверхности звукопроводов. В связи с этим требуется тщательный подбор травителей для каждо­го из материалов, применяемых для изготовления звукопро­вода. Перечисленные особенности технологического процесса изготовления акустоэлектронных устройств далеко не исчер­пывают всей его специфики.

На этапе экспериментальных исследований акустоэлек­тронных устройств применяются самые разнообразные тех­нологические процессы, основной задачей которых является оперативное изготовление опытных образцов. При этом к тех­нологическому процессу не предъявляется стрем их требований по минимизации трудоемкости и повторяемости парамет­ров изготовляемых изделий. Переход от изготовления изделий для лабораторных исследований к их серийному выпуску требует строгого упорядочения технологического процесса, оптимизации его с точки зрения основных производственных критериев серийного производства.

Для таких мелкомасштабных структур, где обычная фото­литография уже не обеспечивает достаточного разрешения, необходимо применять методы электронолитографии и рентгенолитографии. Эти способы в настоящее время начали вхо­дить в технологические схемы изготовления акустоэлектронных устройств СВЧ диапазона. Они позволяют изготовлять встречно-штыревые преобразователи с шагом меньше 1 мкм и достигать рабочих частот гигагерцевого диапазона.
Литература

Кравченко А.Ф. Физические основы функциональной электроники: Учебное пособие. - Новосибирск: Изд-во Новосиб. ун-та, 2000. Щука А.А. Функциональная электроника: Учебник для вузов: - М.: МИРЭА, 1998. Микроэлектроника и полупроводниковые приборы. Сб. статей.// Под ред. А.А. Васенкова и Я.А. Федотова. Вып. 10 - М.: Радио и связь, 1989. Росадо " Физическая электроника и микроэлектроника", М.:Высшая школа, 1991, 351 с. Литовченко В.Г., Горбань А.П. "Основы физики микроэлектронных систем металл-диэлектрик-полупроводник",Киев, Наукова думка, 1978, 316 с. Войцеховский А.В., Давыдов В.Н. "Фотоэлектрические МДП-структуры из узкозонных полупроводников", Томск, Радио и связь, 1990, 327 с. Ю.Р. Носов, В.А. Шилин "Основы физики приборов с зарядовой связью", М.: Наука, 1996, 320 с. Приборы с зарядовой связью, под ред. М.Хоувза, Д.Моргана,М.:Энергоатомиздат, 1991, 376 с. Приборы с зарядовой связью, под ред. Д.Ф. Барба, М.:Мир, 1982, 240 с. Секен К., Томпсет М. "Приборы с зарядовой связью", М.:Мир, 1978. Ландау Л. Д., Лифшиц Е. М., Теория упругости, 3 изд., М., 1985. Викторов И. А. «Звуковые поверхностные волны в твердых телах», М., 1991.
Информация о работе «Приборы с акустическим переносом заряда»
Раздел: Физика
Количество знаков с пробелами: 33909
Количество таблиц: 1
Количество изображений: 5

Похожие работы

Скачать
115840
4
12

... применений и идет изучение возможностей их применения в биологии и медицине. Состояния этих исследований, разработка приборов, в основе действия которых лежат электретные явления, находятся на разных уровнях своего развития. Расширяющееся применение электретов в различных областях обусловлено как техническими преимуществами устройств на основе этого эффекта, так и экономическими соображениями ...

Скачать
74605
0
12

... превышает шумы примерно в 2 раза, составляет для ПЗС около 10-4 лк·с. Фотоприемное устройство на ПЗС можно освещать со стороны затворов (электродов) или с обратном стоны.   3 Приборы с зарядовой связью в оптоэлектронике   Одним из важнейших направлений развития оптоэлектроники является создание телевизионной системы на базе интегральных схем, начиная от передающей системы и кончая экраном. ...

Скачать
153271
6
6

... от структуры силикатных стёкол, и способно выдерживать умеренные концентрации катионов (например, натрий до 0,1%), не увеличивая электропроводимость. Боратное стекло отвечает требованиям герметизации полупроводниковых приборов: свободно от щелочных металлов, уплотняется (спаивается) при температуре до 800С, относительно инертно и водонепроницаемо, имеет регулируемые коэффициенты температурного ...

Скачать
80567
6
31

... ; электреты с объемно-зарядовой поляризацией; с избыточным внедренным зарядом; комбинированные), материалу диэлектрика (неорганические кристаллические электреты, полимерные электреты, биоэлектреты и т.п.), методу получения (термо-электреты, электроэлектреты, короноэлектреты, радиоэлектреты, фотоэлектреты, механоэлектреты, трибоэлектреты и т.п.). Рис. 2. Классификация электретов по ...

0 комментариев


Наверх