1.6. Закон Ома для полной цепи.

 

Рис.
6

Закон Ома для полной (замкнутой) цепи выражает связь между силой тока в цепи, ЭДС и полным сопротивлением.

Рассмотрим полную электрическую Т цепь, состоящую из источника тока с ЭДС е и внутренним сопротив­лением r и внешнего сопротивления R. Внутреннее сопротивление — сопро­тивление источника тока, внешнее со­противление — сопротивление потре­бителя электрического тока, например резистора.

Электрический ток совершает работу не только на внешнем, но и на внутреннем участке цепи: нагревается не только резистор, но и сам источник тока.

По закону сохранения энергии работа электрического тока в замкнутой цепи, равная работе сторонних сил источника тока, равна количеству теплоты, выделившейся на внутреннем и внеш­нем участках цепи:

A=Aст=Q

Поскольку за время Dt через поперечное сечение проводников пройдет заряд. Dq, то работа сторонних сил по перемещению заря­да равна:

Aст=e*Dq=eI*Dt

где I=Dq/Dt - сила тока в проводнике. При этом выделившееся

количество теплоты согласно закону Джоуля-Ленца равно:

Q=I2R*Dt+I2r*Dt

Тогда

Aст=eI*Dt=I2R*Dt+I2r*Dt, или

E=I*R+I*r

Здесь произведение IR называется падением напряжения на внешнем участке цепи, Ir — падением напряжения на внутрен­нем участке цепи.

Таким образом, ЭДС равна сумме падений напряжений на внешнем и внутреннем участках полной (замкнутой) цепи.

Напряжение U (падение напряжений) на внешней цепи:

U=e-Ir

Сумма внешнего и внутреннего сопротивлений есть полное сопротивление цепи: R + r. Закон Ома для полной цепи:

I=e/R+r

Сила тока в полной электрической цепи равна отношению ЭДС цепи к ее полному сопротивлению.

Следствия из закона Ома для полной цепи

1. Если внутреннее сопротивление источника тока r мало по срав­нению с внешним сопротивлением R, то оно не оказывает замет­ного влияния на силу тока в цепи. При этом напряжение на зажимах источника приблизительно равно ЭДС:

U=IR=е

2. Когда внешнее сопротивление цепи стремится к нулю (R -> 0) — при коротком замыкании, сила тока в цепи определяется внут­ренним сопротивлением источника и принимает максималь­ное значение:

Imax=e/r

3. При разомкнутой цепи, когда R-> оо (сопротивление внешнего участка цепи бесконечно велико) I = 0, напряжение источни­ка тока равно его ЭДС. или ЭДС источника измеряется разнос­тью потенциалов на его клеммах:

e=U=ф2-ф1

Знак ЭДС и напряжение на участке цепи могут быть положи­тельными и отрицательными. Значение ЭДС считается положи­тельным, если она повышает потенциал в направлении тока — ток внутри источника идет от отрицательного полюса к положитель­ному полюсу источника. Напряжение принимается положитель­ным, если ток внутри источника идет в направлении понижения потенциала (от положительного полюса источника к отрицатель­ному полюсу).


1.7. Источники тока, их соединения.

На практике несколько источников электрической энергии соединяются в группу — батарею источников электрической энергии. Соединение в батарею может быть последовательное, параллельное и смешанное.


При последовательном соедине­нии положительный полюс предыду­щего источника соединяется с отрица­тельным полюсом последующего.

Полная ЭДС цепи равна алгебраи­ческой сумме ЭДС отдельных элемен­тов, а внутреннее сопротивление бата­реи равно сумме сопротивлений источников:

Рис.7

e=Si=1ei,

r=Si=1ri,

Объяснить это можно тем, что при последовательном соедине­нии электрический заряд поочередно проходит через источник электрической энергии и в каждом из них приобретает энергию. Внутреннее сопротивление батареи также увеличивается.

При последовательном соединении одинаковых источников с ЭДС е и внутренним сопротивлением г ЭДС батареи и ее внут­реннее сопротивление равны.

eб=e*n,

Rб=R*n

где п — число источников.

Закон Ома для полной цепи при последовательном соедине­нии одинаковых источников тока записывается в виде;

I=(e*n)/(R+r*n)

где e и r — ЭДС и внутреннее сопротивление одного источника, R — сопротивление внешнего участка цепи, I — сила тока в цепи.


Рис.8

Например, полная цепь со­держит несколько источников тока, ЭДС которых равны E1,E2,E3 а внутренние сопротивле­ния—r1,r2,r3, соответственно. ЭДС, действующая в цепи, равна:

eб=e1 -e2+e3-e4

Сопротивление батареи равно:

r,, = r, + r, + r, + г.

При этом учитываем, что положительными являются те ЭДС, которые повышают потенциал в направлении обхода цепи, т.е. направление обхода цепи совпадает с переходом внутри источни­ка от отрицательного полюса источника к положительному.

Последовательное соединение источников тока применяется в тех случаях, когда нужно повысить напряжение на внешней цепи, причем сопротивление внешней цепи велико по сравнению с внутренним сопротивлением одного источника.

Рис.
9

При параллельном соединении источников все их положительные

полюсы присоединены к одному проводнику, а отрицательные—к другому.

Полная ЭДС цепи (всей батареи равна ЭДС одного источника: eб= e,а внутреннее сопротивление батареи равно:

Rб=r/n

где п — число параллельно соединенных источников.

При параллельном соединении ток одного источника элект­рической энергии уже не проходит через другие, и поэтому каж­дый заряд получает энергию только в одном источнике. Сопротив­ление батареи меньше сопротивления одного источника, так как через каждый источник электрической энергии проходит только часть зарядов, перемещающихся во внешней цепи.

Закон Ома для полной цепи при параллельном соединении одинаковых источников тока записывается в виде:

I=e/(R+r/n)

Если заменить один источник тока батареей параллельно со­единенных источников, то ток в цепи возрастает.

Параллельное соединение источников тока применяется в тех случаях, когда нужно усилить ток во внешней цепи, не изменяя напряжения, причем сопротивление внешней цепи мало по срав­нению с сопротивлением одного источника.

Если ЭДС источников различны, то для источников тока на­пряжений и ЭДС в различных участках цепи удобно пользоваться правилами Кирхгофа, сформулированными в 1847 г. немецким Физиком Густавом Робертом Кирхгофом (1824-1887).

 


Информация о работе «Расчет разветвленной электрической цепи постоянного тока»
Раздел: Физика
Количество знаков с пробелами: 49075
Количество таблиц: 0
Количество изображений: 19

Похожие работы

Скачать
6299
1
1

... (10) Соберите цепи по схемам 8, 9, в которых реализуются обе схемы соединения. Рассчитайте и измерьте силу тока в цепи при этих соединениях. В выводе сравните расчетные и измеренные значения. Отчет по лабораторной работе № 3 Изучение применения закона Ома для расчета цепей постоянного тока выполненной учащимся школы «Поиск» ………………………………………………………………………………… «…….»………….. 200….

Скачать
3378
0
15

вях электрической цепи постоянного тока. Задание состоит из двух частей. Первая часть задания Рассчитать токи ветвей методом узловых напряжений: 1 нарисовать заданную вариантом схему электрической цепи. Указать положительные направления токов ветвей; 2 записать каноническую форму уравнений метода и определить коэффициенты этой формы; 3 рассчитать узловые напряжения; 4 рассчитать токи ветвей ...

Скачать
20700
2
35

чает в себя источники мощности (активные элементы) и приемники (пассивные элементы). В качестве пассивного линейного элемента в цепях постоянного тока выступает резистор, имеющий электрическое сопротивление R. Единица измерения Ом. Величина, обратная сопротивлению, называется электрической проводимостью: G = 1/R. Единица измерения См - сименс. В качестве активных элементов - источников ...

Скачать
4317
0
0

... один контурный ток, то действующий в ветви ток будет равен контурному: Составляем баланс мощности 227,0485=229,3138 ЗАДАНИЕ 3   СИМВОЛИЧЕСКИЙ РАСЧЕТ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА   Задача 1 По данным табл. 9,10,11 рассчитать токи в ветвях заданной цепи при f = 50 Гц. Используя данные расчета, записать мгновенное значение указанной в табл. 9 величины. Составить баланс мощностей. В ...

0 комментариев


Наверх