2 Расчётная часть
2.1Задание на курсовую работу
Расчет разветвлённой электрической цепи постоянного тока.
Для заданной электрической цепи необходимо:
1) Записать систему уравнений по законам Кирхгофа (без расчетов);
2) Определить все токи и напряжения методами контурных токов и узловых потенциалов;
3) Проверить результаты расчетов по уравнениям баланса мощностей;
4) Построить потенциальные диаграммы для двух замкнутых контуров.
ЭДС=E1=E2=50 В
Резисторы R1=12 Ом
R2=24 Ом
R3=15 Ом
R4=18 Ом
R5=30 Ом
R6=30 Ом
R7=30 Ом
2.2 Составление уравнений по двум законам Кирхгофа.
Записываем уравнения по первому закону Кирхгофа для любых двух узлов:
Узел А: I1+I2+I3=0
Узел B: I3+I4+I5=0
1) Выбираем независимые контуры и направления их обходов.
3) Записываем уравнения по второму закону Кирхгофа для выбранных независимых контуров.
I1*(R1+R6)-I2*R3=E1
I3*R2+I2*R3-I4*R4=0
I4*R4-I5*R7-I5*R5=E2
4) Подставим численное значение:
I1+I2-I3=0
I3+I4+I5=0
I1*(12+30)-I2*15=50
I3*24+I2*15-I4*18=0
I4*18-I5*30-I5*30=50
2.3 Определение всех токов и напряжений методами контурных
токов.
1) Выбираем независимые контуры:
R6,E1,R1,R6;
R3,R2,R4;
R4,E2,R5,R7;
2) Полагаем, что в каждом контуре течет свой контурный ток: I11,I22,I33.
3) Произвольно выбираем их направления.
4) Записываем уравнения по второму закону Кирхгофа относительно контурных токов, для выбранных независимых контуров:
I11(R1+R3+R6)-I22*R3=E1
I22(R2+R3+R4)-I11*R3-I33*R4=0
I33(R4+R5+R7)-I22*R4=E2
Подставим численные значения:
I11*57-I22*15+0=50
-I11*15+I22*57-I33*18=0
0-I22*18+I33*78=50
5) Решаем полученную систему уравнений через определители:
Главный определитель:
|57 -15 0|
D= |-15 57 -18| = 253422+0+0-0-17550-18468=217404
|0 -18 78|
Вспомогательный определитель 1:
|50 -15 0|
D1= |0 57 -32| = 222300+0+13500-0-0-16200=219600
|50 -18 78|
Вспомогательный определитель 2:
|57 50 0|
D2= |-15 0 -18| = 0+0+0-0-(-58500)-(-51300)=109800
|0 50 78|
Вспомогательный определитель 3:
|57 15 50|
D3= |-15 57 0| = 162450+13500+0-0-11250-0=164700
|0 -18 50|
I11=D1/D=219600/217404=1.01(A)
I22=D2/D=109800/217404=0.505 (A)
I33=D3/D=-164700/217404=0.757 (A)
I1=I11=1.01 (A)
I2=I22=-0.505 (A)
I3=I11-I22=1.01-0.505=0.505 (A)
I4=I22-I33=0.505-0.757=-0.252 (A)
I5=I33=0.757 (A)
6)Энергетический баланс мощностей
На основании закона сохранения энергии количество теплоты выделяющиеся в единицу времени на резисторах должно равняться
энергии доставляемой за это же время источниками энергии.
SIE=SI2R
E1*I1+E2*I5=I12 *(R1+R5)+I22*R2+I32 *R3+I42*R4+I52*(R5+R7)
50.5+37.5=32.64+6.120+3.825+0.068+34.382
88.35=77.055 (Вт)
2.4 Метод узловых потенциалов.
V3=0
2) Задаемся положительными направлениями узловых потенциалов от базисного узла.
3) Записываем собственные и взаимные проводимости узлов, исключая базисный:
g11=0.0238+0.0416+0.0666=0.132 (Сим)
g22=0.0416+0.0555+0.0166=0.1137 (Сим)
g12=0.0416 (Сим)
4) Введем узловые токи для всех узлов, исключая базисный:
I11,I22
I11=1.1904 (A)
I22= -0.8333 (A)
Узловой ток равен алгебраической сумме токов от действия ЭДС ветвей пересекающихся в данном узле.
Если ЭДС направлено к узлу, то ЭДС записываем со знаком «+»,
в противном случае «-».
5) Записываем систему уравнений:
V1*g11-V2*g12=I11
V2*g22+V1*g21=I22
g12=g21=0.0416 (Сим)
V1*0.132+V2*(-0.0416)=1.1904
V2*0.1137+V1*(-0.0416)= -0,8333
V1*0.132-V2*0.0416=1.1904
-V1*(-0.0416)+V1*0.132= -0.8333
|0.132 -0.0416|
D= |-0.0416 0.132| = 0.0174-0.0174=0.0157
|1.1904 -0.0416|
D1= |-0.8333 0.132| = 0.1571+0.0346=0.1225
|0.132 1.1904|
D2= |-0.0416 -0.8333| = (-0.1099)-(-0.0495)= -0.0604
V1=D1/D= 0.125/0.0157= 7.8025
V2=D2/D= -0.0604/0.0157= -3.8471
I1=(V3-V1+E1)/(R1+R6)=42.1975/42=1.0047 (A)
I2=(V1-V2)/R2=11.6496/24=0.4854 (A)
I3=(V3-V1)/R3= -7.8025/15= -0.5201 (A)
I4=(V3-V2)/R4= 0.2137 (A)
I5=(V3-V2+E2)/(R5+R7)= 53.8471/60=0.8974 (A)
2.5 Энергетический баланс мощностей
На основании закона сохранения энергии количество теплоты выделяющиеся в единицу времени на резисторах должно равняться энергии доставляемой за это же время источниками энергии.
SIE=SI2R
Энергетический баланс мощностей методом контурных токов:
E1*I1+E2*I5=I12 *(R1+R5)+I22*R2+I32 *R3+I42*R4+I52*(R5+R7)
50.5+37.5=32.64+6.120+3.825+0.068+34.382
88.35=77.055 (Вт)
Энергетический баланс мощностей методом узловых потенциалов:
E1*I1+E2*I5=I12 *(R1+R5)+I22*R2+I32 *R3+I42*R4+I52*(R5+R7)
50.235+44.87=42.3948+5.6547+4.0575+0.8208+48.318
95.105=101.245 (Вт)
2.6 Построение потенциальных диаграмм для двух замкнутых контуров.
Vb=Va-I1*R1= -12.05 B (12;-12.0564)
R=12 (Ом)
Vc=Vb-I3*R3= -19.8579 C (27;-19.8579)
R=R+15 (Ом)
Vd=Vc-I1*R6= -50.02 D (57;-50.02)
R=R+30 (Ом)
Va=Vd+E1= 0 A (57;0)
R=57 (Ом)
Рис. 20
Vt=0
Vf=Vt+I5*R5= 22.71 F(30;22.71)
R=30 (Ом)
Ve=Vf+I5*R7= 45.42 E(60;45.42)
R=R+30 (Ом)
Vs=Ve-I4*R4= 40.884 S(78;40)
R=R+18 (Ом)
Vt=Vs-E2= 10 T(78;10)
R=78 (Ом)
Рис. 21
Заключение.
В процессе выполненных заданий я проанализировал схему разветвленной электрической цепи постоянного тока, в полном объёме изучил её работу, различные методы определения токов и напряжений, узловых потенциалов, проверил на практике различные законы Ома, законы Кирхгофа, баланс мощностей. Наглядно графическим методом показал зависимость напряжения от сопротивления.
Список литературы.
Дятлаф А.А. Яворский Б.М. Курс физики//Высшая школа . 2000г.
Башин М. Л. Теория электрических цепей // Электротехника. 2001г.
Кринина М. Физика для высшеё школы // Физфакультет. 2000г.
Савельев И.Р. Курс общей физики // Москва 2000г.
Шабанова А.Р. Лекции // 2003г.
... (10) Соберите цепи по схемам 8, 9, в которых реализуются обе схемы соединения. Рассчитайте и измерьте силу тока в цепи при этих соединениях. В выводе сравните расчетные и измеренные значения. Отчет по лабораторной работе № 3 Изучение применения закона Ома для расчета цепей постоянного тока выполненной учащимся школы «Поиск» ………………………………………………………………………………… «…….»………….. 200….
вях электрической цепи постоянного тока. Задание состоит из двух частей. Первая часть задания Рассчитать токи ветвей методом узловых напряжений: 1 нарисовать заданную вариантом схему электрической цепи. Указать положительные направления токов ветвей; 2 записать каноническую форму уравнений метода и определить коэффициенты этой формы; 3 рассчитать узловые напряжения; 4 рассчитать токи ветвей ...
чает в себя источники мощности (активные элементы) и приемники (пассивные элементы). В качестве пассивного линейного элемента в цепях постоянного тока выступает резистор, имеющий электрическое сопротивление R. Единица измерения Ом. Величина, обратная сопротивлению, называется электрической проводимостью: G = 1/R. Единица измерения См - сименс. В качестве активных элементов - источников ...
... один контурный ток, то действующий в ветви ток будет равен контурному: Составляем баланс мощности 227,0485=229,3138 ЗАДАНИЕ 3 СИМВОЛИЧЕСКИЙ РАСЧЕТ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА Задача 1 По данным табл. 9,10,11 рассчитать токи в ветвях заданной цепи при f = 50 Гц. Используя данные расчета, записать мгновенное значение указанной в табл. 9 величины. Составить баланс мощностей. В ...
0 комментариев