1.2. Основные уравнения, описывающие процесс фильтрации газа в пористой среде


В последнее время наблюдается рост интереса к различным термодинамическим эффектам в пористых средах. Это связано с их многообразными практическими приложениями[4,5].

Особую важность упомянутые проблемы имеют в физике нефтегазоносных пластов. Поля давления в нефтегазоносных пластах в условиях разработки, как правило, нестационарны. Дросселирование нефти и газа приводит к проявлению баротермического эффекта – изменению температуры при течении нефти или газа в пористой среде в нестационарном поле давления. Величина барометрического эффекта в отличие от эффекта Джоуля – Томсона, наблюдающегося при стационарном дросселировании, зависит от коллекторских свойств пористой среды, времени, геометрии течения и других факторов. Эти особенности баротермического эффекта обеспечивают возможность его практического применения при исследовании скважин и пластов.

В основу исследований положена полная система уравнений для - той фазы (компонента), описывающих баротермический эффект. Ядром этой системы является уравнение для температуры с учетом термодинамических эффектов высокого порядка [9]

(I.2.1)

где первое слагаемое в левой части уравнения (I.2.1) описывает изменение температуры в пласте со временем, второе – за счет конвекции (перемещения больших объемов газа). Первое слагаемое в правой части ответственно за теплопроводность, второе – за межфракционный теплообмен, третье описывает адиабатический эффект, четвертое – эффект Джоуля-Томсона и пятое – влияние поля тяготения Земли.

Вторым уравнением системы является уравнение неразрывности, которое записывается в виде:

.

(I.2.2)

Фильтрация газа подчиняется закону Дарси

.

(I.2.3)

К системе добавляется уравнение состояния

.

(I.2.4)

Система (I.2.1)-(I.2.4) является нелинейной, кроме того, уравнения (I.2.1)-(I.2.2) являются взаимосвязанными.


1.3. Описание задачи

Рассмотрим температурную задачу в полярной системе координат, где среда представлена одной бесконечной областью (рис.1). Область является пористой и насыщена газом. Будем рассматривать случай радиального движения газа из бесконечности к скважине радиуса , ось которой совпадает с осью

Рис. 1. постановка задачи


При описании температурной задачи примем следующие допущения:

пористый пласт считается однородным и изотропным по гидродинамическим и теплофизическим свойствам;

давления в скважине и на контуре питания остаются неизменными;

породы, окружающие пласт предполагаются непроницаемыми и однородными по своим теплофизическим свойствам;

температуры газа и скелета пористой среды в каждой точке совпадают;

естественное тепловое поле Земли считается стационарным;

пласт расположен на глубине порядка 1 – 2 км, поэтому суточные и сезонные колебания температуры не достигают пласта;

адиабатическим эффектом, обусловленным гравитационным полем пренебрегаем.


1.4. Математическая постановка задачи

Математическая постановка задачи включает температурную задачу, гидродинамическую задачу, уравнение состояния и соотношение для поля скорости конвективного переноса тепла. Ниже рассматриваются соответствующие постановки задач.

1.4.1. Математическая постановка температурной задачи

Математическая постановка задачи для всех областей представляется уравнением (I.2.1). Температурное поле в этом случае описывается уравнением Чекалюка в пренебрежении теплопроводностью и адиабатическим эффектом и с учетом закона фильтрации Дарси:

.

(I.4.1.1)

Будем рассматривать задачу при следующих условиях температуры:

начальном

,

(I.4.1.2)

и граничном

.

(I.4.1.3)

1.4.2. Математическая постановка гидродинамической задачи

Математическая постановка гидродинамической задачи в полярной системе координат примет следующий вид. Учитывая, что для осесимметричного течения поле давления является функцией координаты r уравнение можно представить в виде:

,

(1.4.2.1)

Будем рассматривать задачу при следующих условиях. Пусть PC – давление на границе контура питания. При значении радиуса, равном радиусу контура питания

,

(1.4.2.2)

давление поддерживается равным Рс:

,

(1.4.2.3)

Pс – давление на контуре питания.

При значении радиуса, равном радиусу скважины

,

(1.4.1.3)

давление поддерживается равным PW:

,

(1.4.1.4)

где PW – давление в скважине.



Информация о работе «Фильтрация газов(баротермический эффект)»
Раздел: Физика
Количество знаков с пробелами: 20354
Количество таблиц: 51
Количество изображений: 73

Похожие работы

Скачать
38033
7
8

... . Однако полного выравнивания температур никогда не происходит, так как конвективный теплоперенос гораздо мощнее теплообмена. Относительный вклад теплообмена возрастает с уменьшением скорости потока. Квазистационарное распределение температуры в стволе скважины выше продуктивных пластов для потока жидкости описывается следующей приближенной формулой (Чекалюк Э.Б.) T(z) = То- Гг + ГВ (1 - е -т ) ...

Скачать
129168
471
101

... влияния – RТ и чистой воды – Rwдля некоторого момента времени 3.6. Выводы В нулевом и первом приближениях решена задача о температурном поле, вызванном закачкой радиоактивного раствора в глубокозалегающие пласты. На основании полученного решения установлены расчетные формулы для полей температуры, вызванных энергией распада и различием температур пласта и закачиваемой жидкости. ...

0 комментариев


Наверх