2. Детерминированные и вероятностные решения.
Детерминированные решения принимаются в условиях определённости, когда руководитель располагает практически полной и достоверной информацией в отношении решаемой проблемы, что позволяет ему точно знать результат каждого из альтернативных вариантов выбора. Такой результат только один, и вероятность его наступления близка к единице. Примером детерминированного решения может быть выбор в качестве инструмента инвестирования свободной наличности 20 % - ных облигаций федерального займа с постоянным купонным доходом. Финансовый менеджер в этом случае точно знает, что за исключением крайне маловероятных чрезвычайных обстоятельств, из-за которых правительство РФ не сможет выполнить свои обязательства , организация получит ровно 20 % годовых на вложенные средства. Подобным образом, принимая решение о запуске в производство определённого изделия, руководитель может точно определить уровень издержек производства, так как ставки арендной платы, стоимость материалов и рабочей силы могут быть рассчитаны довольно точно.
Анализ финансовых решений в условиях определенности это самый простой случай : известно количество возможных ситуаций (вариантов) и их исходы . Нужно выбрать один из возможных вариантов . Степень сложности процедуры выбора в данном случае определяется лишь количеством альтернативных вариантов . Рассмотрим две возможные ситуации :
а) Имеется два возможных варианта ;
n=2
В данном случае аналитик должен выбрать (или рекомендовать к выбору) один из двух возможных вариантов . Последовательность действий здесь следующая :
· определяется критерий по которому будет делаться выбор ;
· методом “ прямого счета ” исчисляются значения критерия для сравниваемых вариантов ;
· вариант с лучшим значением критерия рекомендуется к отбору .
Возможны различные методы решения этой задачи . Как правило они подразделяются на две группы :
методы основанные на дисконтированных оценках ;
методы , основанные на учетных оценках .
Первая группа методов основывается на следующей идее . Денежные доходы , поступающие на предприятие в различные моменты времени , не должны суммироваться непосредственно ; можно суммировать лишь элементы приведенного потока . Если обозначить F1,F2 ,....,Fn прогнозируемый коэффициент дисконтирования денежного потока по годам , то i-й элемент приведенного денежного потока Рi рассчитывается по формуле :
Pi = Fi / ( 1+ r ) iгде r- коэффициент дисконтирования.
Назначение коэффициента дисконтирования состоит во временной упорядоченности будущих денежных поступлений ( доходов ) и приведении их к текущему моменту времени . Экономический смысл этого представления в следующем : значимость прогнозируемой величины денежных поступлений через i лет ( Fi ) с позиции текущего момента будет меньше или равна Pi . Это означает так же , что для инвестора сумма Pi в данный момент времени и сумма Fi через i лет одинаковы по своей ценности . Используя эту формулу , можно приводить в сопоставимый вид оценку будущих доходов , ожидаемых к поступлению в течении ряда лет . В этом случае коэффициент дисконтирования численно равен процентной ставке , устанавливаемой инвестором , т.е. тому относительному размеру дохода , который инвестор хочет или может получить на инвестируемый им капитал .
Итак последовательность действий аналитика такова ( расчеты выполняются для каждого альтернативного варианта ) :
* рассчитывается величина требуемых инвестиций (экспертная оценка ) , IC ;
* оценивается прибыль ( денежные поступления ) по годам Fi ;
* устанавливается значение коэффициента
дисконтирования , r ;
* определяются элементы приведенного потока , Pi ;
* рассчитывается чистый приведенный эффект ( NPV ) по
формуле:
NPV= E Pi - IC· сравниваются значения NPV ;
· предпочтение отдается тому варианту , который имеет больший NPV ( отрицательное значение NPV свидетельствует об экономической нецелесообразности данного варианта ) .
Вторая группа методов продолжает использование в расчетах прогнозных значений F . Один из самых простых методов этой группы - расчет срока окупаемости инвестиции .Последовательность действий аналитика в этом случае такова :
* рассчитывается величина требуемых инвестиций , IC ;
* оценивается прибыль ( денежные поступления ) по годам , Fi ;
* выбирается тот вариант , кумулятивная прибыль по которому за меньшее число лет окупит сделанные инвестиции .
б) Число альтернативных вариантов больше двух .
n > 2
Процедурная сторона анализа существенно усложняется из-за множественности вариантов , техника “ прямого счета “ в этом случае практически не применима . Наиболее удобный вычислительный аппарат - методы оптимального программирования ( в данном случае этот термин означает “ планирование ” ) . Этих методов много ( линейное , нелинейное, динамическое и пр. ), но на практике в экономических исследованиях относительную известность получило лишь линейное программирование. В частности рассмотрим транспортную задачу как пример выбора оптимального варианта из набора альтернативных . Суть задачи состоит в следующем .
Имеется n пунктов производства некоторой продукции ( а1,а2,...,аn ) и k пунктов ее потребления ( b1,b2,....,bk ), где ai - объем выпуска продукции i - го пункта производства , bj - объем потребления j - го пункта потребления . Рассматривается наиболее простая , так называемая “закрытая задача ” , когда суммарные объемы производства и потребления равны . Пусть cij - затраты на перевозку единицы продукции . Требуется найти наиболее рациональную схему прикрепления поставщиков к потребителям , минимизирующую суммарные затраты по транспортировке продукции . Очевидно , что число альтернативных вариантов здесь может быть очень большим , что исключает применение метода “ прямого счета ” . Итак необходимо решить следующую задачу :
E E Cg Xg -> min
E Xg = bj E Xg = bj Xg >= 0
Известны различные способы решения этой задачи -распределительный метод потенциалов и др . Как правило для расчетов применяется ЭВМ .
При проведении анализа в условиях определенности могут успешно применяться методы машинной имитации , предполагающие множественные расчеты на ЭВМ . В этом случае строится имитационная модель объекта или процесса ( компьютерная программа ) , содержащая b-е число факторов и переменных , значения которых в разных комбинациях подвергается варьированию . Таким образом машинная имитация - это эксперимент , но не в реальных , а в искусственных условиях . По результатам этого эксперимента отбирается один или несколько вариантов , являющихся базовыми для принятия окончательного решения на основе дополнительных формальных и неформальных критериев .
Однако лишь немногие решения принимаются в условиях определённости. Большинство управленческих решений являются вероятностными.
Вероятностными называются решения, принимаемые в условиях риска или неопределённости.
К решениям принимаемых в условиях риска, относят такие, результаты которых не являются определёнными, но вероятность каждого результата известна. Вероятность определяется как степень возможности свершения данного события и изменяется от 0 до 1. Сумма вероятностей всех альтернатив должна быть равна единице. Вероятность можно определить математическими методами на основе статистического анализа опытных данных. Например, компании по страхованию жизни на основе анализа демографических данных могут с высокой степенью точности прогнозировать уровень смертности в определённых возрастных категориях и на этой базе определять страховые тарифы и объем страховых взносов, позволяющих выплачивать страховые премии и получать прибыль. Такая вероятность, рассчитанная на основе информации, позволяющей сделать статистически достоверный прогноз, называется объективной.
В ряде случаев, однако, организация не располагает достаточной информацией для объективной оценки вероятности возможных событий. В таких ситуациях руководителям помогает опыт, который показывает , что именно может произойти с наибольшей вероятностью. В этих случаях оценка вероятности является субъективной.
Пример решения, принятого в условиях риска ,- решение транспортной компании застраховать свой парк автомобилей. Финансовый менеджер не знает точно, будут ли аварии и сколько и какой ущерб они причинят, но из статистики транспортных происшествий он знает, что одна из десяти машин раз в году попадает в аварию и средний ущерб составляет $ 1 000 (цифры условные). Если организация имеет 100 автомашин, то за год вероятны 10 аварий с общим ущербом $ 10 000. В действительности же аварий может быть меньше, но ущерб больше, или наоборот. Исходя из этого, и принимается решение о целесообразности страхования транспортных средств и размере страховой суммы.
Анализ и принятие решений в условиях риска встречается на практике наиболее часто. Здесь пользуются вероятностным подходом, предполагающим прогнозирование возможных исходов и присвоение им вероятностей . При этом пользуются:
а) известными , типовыми ситуациями ( типа - вероятность появления герба при бросании монеты равна 0.5 ) ;
б) предыдущими распределениями вероятностей ( например,из выборочных обследований или статистики предшествующих периодов известна вероятность появления бракованной детали ) ;
в) субъективными оценками ,сделанными аналитиком самостоятельно либо с привлечением группы экспертов .
Последовательность действий аналитика в этом случае такова :
· прогнозируются возможные исходы Ak , k = 1 ,2 ,....., n ;
· каждому исходу присваивается соответствующая вероятность pk , причем
Е рк = 1
· выбирается критерий(например максимизация математического ожидания прибыли ) ;
· выбирается вариант , удовлетворяющий выбранному критерию .
Пример : имеются два объекта инвестирования с одинаковой прогнозной суммой требуемых капитальных вложений . Величина планируемого дохода в каждом случае не определенна и приведена в виде распределения вероятностей :
Проект А | Проект В | ||
Прибыль | Вероятность | Прибыль | Вероятность |
3000 | 0. 10 | 2000 | 0 . 10 |
3500 | 0 . 20 | 3000 | 0 . 20 |
4000 | 0 . 40 | 4000 | 0 . 35 |
4500 | 0 . 20 | 5000 | 0 . 25 |
5000 | 0 . 10 | 8000 | 0 . 10 |
Тогда математическое ожидание дохода для рассматриваемых проектов будет соответственно равно :
У ( Да ) = 0 . 10 * 3000 + ......+ 0 . 10 * 5000 = 4000
У ( Дб ) = 0 . 10 * 2000 +.......+ 0 . 10 * 8000 = 4250
Таким образом проект Б более предпочтителен . Следует , правда , отметить , что этот проект является и относительно более рискованным , поскольку имеет большую вариацию по сравнению с проектом А ( размах вариации проекта А - 2000 , проекта Б - 6000 ) .
В более сложных ситуациях в анализе используют так называемый метод построения дерева решений . Логику этого метода рассмотрим на примере .
Пример : управляющему нужно принять решение о целесообразности приобретения станка М1 либо станка М2 . Станок М2 более экономичен , что обеспечивает больший доход на единицу продукции, вместе с тем он более дорогой и требует относительно больших накладных расходов :
Постоянные расходы | Операционный доход на единицу продукции | ||
Станок М1 | 15000 | 20 | |
Станок М2 | 21000 | 24 | |
Процесс принятия решения может быть выполнен в несколько этапов :
Этап 1 . Определение цели .
В качестве критерия выбирается максимизация математического ожидания прибыли .
Этап 2 . Определение набора возможных действий для рассмотрения и анализа ( контролируются лицом , принимающим решение)
Управляющий может выбрать один из двух вариантов :
а1 = { покупка станка М1 }
а2 = { покупка станка М2 }
Этап 3 . Оценка возможных исходов и их вероятностей ( носят случайный характер ) .
Управляющий оценивает возможные варианты годового спроса на продукцию и соответствующие им вероятности следующим образом :
х1 = 1200 единиц с вероятностью 0 . 4
х2 = 2000 единиц с вероятностью 0 . 6
Этап 4 . Оценка математического ожидания возможного дохода :
1200 20 * 1200 - 15000 = 9000
М 0.4
0.6 2000 20 * 2000 - 15000 = 25000
а1
а2
1200 24 * 1200 - 21000 = 7800
0.4
М2 0.6 2000 24 * 2000 - 21000 = 27000
Е ( Да ) = 9000 * 0 . 4 + 25000 * 0 . 6 = 18600
Е ( Дб ) = 7800 * 0 . 4 + 27000 * 0 . 6 = 19320
Таким образом , вариант с приобретением станка М2 экономически более целесообразен .
Решение принимается в условиях неопределённости , когда из-за недостатка информации невозможно количественно оценить вероятность его возможных результатов. Это довольно часто встречается при решении новых, нетипичных проблем, когда требующие учёта факторы настолько новы и/или сложны, что о них невозможно получить достаточно информации. Неопределённость характерна и для некоторых решений , которые приходится принимать в быстро меняющихся ситуациях . В итоге вероятность определённой альтернативы невозможно оценить с достаточной степенью достоверности.
Сталкиваясь с неопределённостью, финансовый менеджер может использовать две основные возможности:
1) попытаться получить дополнительную информацию и ещё раз проанализировать проблему с целью уменьшить её новизну и сложность. В сочетании с опытом и интуицией это даст ему возможность оценить субъективную , предполагаемую вероятность возможных результатов;
2) когда не хватает времени и / или средств на сбор дополнительной информации, при принятии решений приходится полагаться на прошлый опыт и интуицию.
Заключение
На наш взгляд в этом реферате была показана актуальность изучения методов разработки финансовых решений. В заключение можно сделать ряд выводов:
1. Решение - это выбор альтернативы. Необходимость принятия решений объясняется сознательным и целенаправленным характером человеческой деятельности, возникает на всех этапах процесса управления и составляет часть любой функции менеджмента.
2. Принятие решений (финансовых) в организациях имеет ряд отличий от выбора отдельного человека, так как является не индивидуальным, а групповым процессом.
3. На характер принимаемых решений огромное влияние оказывает степень полноты и достоверной информации, которой располагает менеджер. В зависимости от этого решения могут приниматься в условиях определенности (детерминированные решения) и риска или неопределенности (вероятностные решения).
4. Комплексный характер проблем современного менеджмента требует комплексного, всестороннего их анализа, т.е. участия группы менеджеров и специалистов, что приводит к расширению коллегиальных форм принятия решений.
5. Принятие решения – не одномоментный акт, а результат процесса, имеющего определенную продолжительность и структуру. Процесс принятия решений – циклическая последовательность действий субъекта управления, направленных на разрешение проблем организации и заключающихся в анализе ситуации, генерации альтернатив, выборе из них наилучшей и ее реализации.
... в зависимости от поведения рынка в целом. Другое исходное предположение CAPM состоит в том, что инвесторы принимают решения, учитывая лишь два фактора: ожидаемую доходность и риск. Хотя эта модель является упрощенным представлением финансового рынка, в своей деятельности ее используют многие крупные инвестиционные структуры. Согласно САРМ выделяются систематический и несистематический риски. ...
... . руб.? Как изменится точка безубыточности ТБУ, если повысить цену реализации продукции Цр в среднем на 5%, то есть установить цену на уровне 2100 руб. за 1 т? Для обоснованного принятия управленческого решения далее выполним практические расчеты, которые позволяли бы руководству предприятия принимать необходимые и, главное, обоснованные решения. Как изменится прибыль при увеличении объема ...
... случаев решения не принимаются из-за неприятной проблемы; в 35 процентах случаев - из-за нечеткого распределения обязанностей; в 20 процентах случаев принимаются неправильные решения. 1.2 Наиболее популярные методы принятия управленческих решений 1. Метод "мозговой атаки", или "мозговой штурм", применяется, как правило, при необходимости принятия экстренного, сложного решения, ...
... когда не хватает времени на сбор дополнительной информации или затраты на нее чересчур высоки. Временные и информационные ограничения имеют важнейшее значение при принятии управленческих решений. Глава 3. Методы оптимизации управленческих решений Оптимизация решения – это процесс перебора множества факторов, влияющих на результат. Оптимальное решение – это выбранное по какому-либо критерию ...
0 комментариев