2. Реакции с разрывом С¾O связи.

 

Образование галогенидов.

При действии неорганических галогенангидридов на третичные и вторичные спирты происходит в основном обмен гидроксила на галоген:

3(CH3)3COH + PBr3 → 3(CH3)3CBr + P(OH)3

Обмен гидроксила на галоген происходит и при действии PBr3 и PI3 на первичные спирты:

3C2H5OH + PBr3 → 3C2H5Br + P(OH)3

При действии галогенводородных кислот на спирты также образуются алкилгалогениды.

Реакция может протекать либо по механизму SN2, либо по SN1. Например:


Br-

RCH2OH + H+ → R¾CH2 ¾O+¾O → RCH2Br + H2O SN2

½

H для первичных спиртов

R R -H2O R Br- R

R’¾C¾OH + H+ → R’¾C¾O+¾H R’¾C+ → R’¾C¾Br SN1

R” R” ½ R”  R”

H для вторичных и третичных спитртов

Для успешной замены гидроксильной группы на хлор используют реактив Лукаса (соляная кислота + ZnCl2 ). Реакционная способность спиртов в этих реакциях изменяется в ряду: третичные>вторичные>первичные.

3. Реакции с участием группы OH и атома водорода, стоящего у соседнего атома углерода.

 

 Дегидратация спиртов в олефины. Все спирты (кроме метилового) при пропускании их паров над нагретой до ~375°С окисью алюминия отщепляют воду и образуют олефин:

Al2O3

СН3─СН2ОН СН2=СН2 + Н2О

Особенно легко элиминируется вода из третичных спиртов.

Дегидрогенизация. Образование разных продуктов в реакциях дегидрогенизации и окисления является важнейшим свойством, позволяющим отличить первичные, вторичные и третичные спирты.

При пропускании паров первичного или вторичного, но не третичного спирта над металлической медью при повышенной температуре происходит выделение двух атомов водорода, и спирт превращается в альдегид:

 Cu

RCH2OH → R−C−H + H2

200-300 °C  ║

 O

Вторичные спирты дают в этих условиях кетоны:

 R

\ Cu

CHOH  → R’−C−R + H2

/ 200-300 °C ║

R’  O

Окисление. Для окисления спиртов обычно используют сильные окислители: KMnO4, K2Cr2O7 и H2SO4. При окислении первичных спиртов образуются альдегиды, которые далее могут окисляться до карбоновых кислот:

RCH2OH + [O] → R─C─H + H2O

O

R

\

CHOH + [O] → R’−C−R + H2O

/  ║

R’ O

Вторичные спирты при окислении превращаются в кетоны:

OH O

½ [O] ║

CH3CHCH3 →  CH3CCH3

 Пропанол-2 пропанон-2  

Третичные спирты значительно труднее окисляются, чем первичные и вторичные, причём с разрывом связей C¾C(OH):

(а) O  O CH3

║ ║ ½

H¾C¾OH + CH3CH2C¾CHCH3

 Муравьиная к-та 2-метилпентанон-3

CH3 O O CH3

½ [O] (б)  ║ ║ ½

CH3CH2 ¾ C¾OH CH3 ¾C¾OH + CH3C¾CHCH3

½ Уксусная к-та 2-метилбутанон-3

CH3CHCH3

2,3-диметилпентанон-3 O O

(в)  ║  ║

 CH3CCH3 + CH3CH2CCH3

Ацетон бутанон-2

 

Двухатомные спирты, или гликоли (алкандиолы)

Двугидроксильные производные алканов (открыты Вюрцем) носят название гликолей или алкандиолов. Гидроксилы в алкандиолах находятся либо при соседних, либо более удалённых друг от друга углеродных атомах. 1,2-Гликоли имеют сладкий вкус, откуда и происходит название класса. Низшие гликоли – смешивающиеся с водой вязкие жидкости большей плотности, чем одноатомные спирты. Кипят при высокой температуре. Гликоли с короткой углеродной цепью, и прежде всего этиленгликоль, не растворяются в углеводородах и эфире, но смешиваются с водой и спиртами; как растворители они ближе стоят к воде и метанолу, чем к обычным органическим растворителям.

 

Способы получения

В принципе гликоли могут быть получены всеми синтетическими способами получения спиртов.

Гидролиз дигалогенпроизводных:

ClCH2─CH2Cl + 2H2O → HOCH2─CH2OH + 2HCl

или

ClCH2─CH2OH + H2O → HOCH2─CH2OH + HCl

Восстановление сложных эфиров двухосновных кислот:

O O

║ ║

C2H5O─C─(CH2)n─C─OC2H5 + 8Na+6C2H5OH → HOCH2─(CH2)n─CH2OH +8C2H5ONa

3CH2=CH2 + 4H2O + 2KMnO4 → 3HOCH2─CH2OH + 2KOH + 2MnO2

Получение гликолей через хлоргидрины. Действием хлора и воды на олефин можно получить хлоргидрин, например ClCH2─CH2OH. Хлоргидрин может быть превращён гидролизом непосредственно в гликоль.

Пинаконы получают восстановлением (неполным) кетонов электрохимически или действием магния в присутствии иода:

СH3 H3C CH3  H3C CH3

½ | | 2H2O | |

2 C=O + 2Mg + I2 → CH3─C─C─CH3 → CH3─C─C─CH3

 ½ | | | |

CH3  IMgO OMgI HO  OH

 Бутандиол-1,4 (важный продукт, являющийся промежуточным продуктом при получении бутадиена и далее синтетического каучука) получают в промышленности гидрированием бутин-2-диола-1,4 (НОН2С─С≡С─СН2ОН).

В промышленности этиленгликоль синтезируют из окида этилена, который получают окислением этилена:

 250 °C H2O

2CH2=CH2 +O2 Ag CH2¾CH2H+  HOCH2CH2OH

\ /

O

 a-окись

Химические свойства гликолей

Так же как и одноатомные спирты, гликоли могут иметь первичные, вторичные и третичные гидроксилы. Этиленгликоль – двупервичный спирт, пропиленгликоль – первично-вторичный, пинакон – двутретичный. Всё сказанное о свойствах первичных, вторичных и третичных спиртов приложимо и к соответствующим гликолям.

1.    Гликоли легко образуют хлорангидриды и бромгидрины при действии HCl или HBr, но второй гидроксил замещается на галоген труднее (лучше действием PCl5 или SOCl2).

2.    При действии кислот гликоли дают два ряда сложных эфиров:

O O O

║ ║ ║

HOCH2─CH2─O─C─R R─C─O─CH2─CH2─O─C─R

3.    При окислении первичных гликолей образуются альдегиды. Так, окислением этиленгликоля получают глиоксаль:

[O] [O]

HOCH2─CH2OH → HOCH2─C=O → O=C─C=O

½ │ │

H H H

4.    Дегидратация гликолей (кислотами или хлористым цинком) приводит к образованию альдегидов (или кетонов). Считают, что механизм этой дегидратации состоит в том, что сначала путём отрыва одной гидроксильной группы протоном образуется карбониевый катион, а затем атом водорода вместе со своей парой электронов (в виде гидрид-иона) перемещается к карбониевому углероду (гидридное перемещение):

 H

+ │

CH2─CH2 → CH2─CH → CH3─CH + H+

│ │ │  ║

H+ OH OH O  O

H

При дегидратации пинаконов мигрирует не водород, а метильная группа и происходит пинаколиновая перегруппировка, сопровождающаяся изменением углеродного скелета:

СН3 СН3  СН3 СН3  СН3

│ │ ½ │ │

СН3─C ¾С─СН3 → С+─С─СН3 → СН3─С ─ С─СН3 + Н+

│ │ ½ ½ │ ║

ОН ОН  СН3  О  СН3О

Н+  │ пинаколин

пинакон  Н

5.    Альдегиды в кислой среде ацетилируют 1,2-гликоли, образуя циклические ацетали (в кислой, но не щелочной среде в результате гидролиза ацеталя регенерируются исходные вещества):

 СН2─О

СН2─ОН Н+

│ + О=С─СН3 С─СН3

СН2─ОН │  Н+, Н2О

Н  СН2─О

ацеталь

1,3-Гликоли способны реагировать подобным образом, давая шестичленные циклические ацетали.

Для осуществления реакций ацетилирования необходима возможность приведения обоих гидроксилов в одну плоскость, т.е. возможность свободного вращения вокруг углерод-углеродной связи:

НО─С

С─ОН

Это условие соблюдается у гликолей с открытой цепью, но не всегда у циклических.

Многоатомные спирты

 

Трёхатомные спирты – алкантриолы

Единственным важным представителем алкантриолов является глицерин (пропантриол-1,2,3). Это очень вязкая бесцветная сладкая жидкость; т. пл. 17°С, т. кип. 290°С.

Глицерин был получен гидролизом жиров, которые являются сложными эфирами глицерина и высших гомологов уксусной кислоты (и их олефиновых изологов). При гидролизе жиров перегретым паром глицерин остаётся в водном растворе, который отделяют от слоя расплавленных жирных кислот; после отгонки воды из этого раствора может быть выделен глицерин.

Некоторое количество глицерина образуется при брожении сахаров.

В настоящее время осуществлён промышленный синтез глицерина из пропилена, выделяемого из газов крекинга нефти. Этот синтез является доказательством строения глицерина как пропантриола.

Сначала путём хлорирования пропилена при высокой температуре (500°С) получают хлористый аллил, сохраняющий двойную связь (реакция Львова):

СН2=СН─СН3 + Сl2 → CH2=CH─CH2Cl + HCl

Затем присоединением хлора и воды хлористый аллил превращают в 1,3-дихлорпропанол-2

Cl OH Cl

│ │ │

CH2=CH─CH2Cl + Cl2 + H2O → CH2─CH─CH2 + HCl

гидролиз которого даёт глицерин:

Cl OH Cl ОН ОН ОН

│ │ │ │ │ │

CH2─CH─CH2 + 2Н2О → CH2─CH─CH2 + 2HСl

1,3-дихлорпропанол-2 пропантриол-1,2,3

(глицерин)

Глицерин даёт с кислотами три ряда сложных эфиров: моно-, ди- и триэфиры. Для первых и вторых возможны изомеры: продукты этерификации по первичным и вторичным группам. При действии HCl на глицерин получается смесь двух монохлоргидринов глицерина, содержащая больше α-монохлоргидрина СН2ОН─СНОН─СН2Cl и меньше β-изомера СH2OH─CHCl─CH2OH. При обработке щёлочью оба изомера дают один и тот же глицидный спирт

Н2С─СН─СН2ОН

\ /

О

При обработке глицерина хлористым водородом в более жёстких условиях образуются два дихлоргидрина

СН2Cl─СНОН─СН2Cl СH2OH─CHCl─CH2Cl

при обработке щёлочью дающие эпихлоргидрин глицерина

Н2С─СН─СН2Сl

\ /

О

Являясь одновременно первичным и вторичным спиртом, глицерин, нашедший многообразное применение в органическом синтезе, при окислении образует смесь соответствующего альдегида и кетона:

СН2ОН─СНОН─С=О

|

 Н

СH2OH─CНОН─CH2OH Глицериновый альдегид

СH2OH─CО─CH2OH

 диоксиацетон

Диоксиацетон может быть получен хлорированием ацетона в 1,3-дихлорацетон СH2Cl─CО─CH2Cl и гидролизом последнего. Эта реакция также подтверждает строение глицерина.

Четырёхатомные, пятиатомные и шестиатомные спирты (эритриты, пентиты и гекситы)

Эритрит (бутантетраол-1,2,3,4) встречается в свободном виде и в виде сложных эфиров в водорослях и некоторых плесенях. Синтетический четырёхатомный спирт эритрит был получен из бутадиена СH2=СH─CН=CH2 следующим путём:

 O O

 ║ ║

CН=CH2 +Br2 CH─CH2Br 2AgO CCH3 CH─CH2─OCCH3 +Br2

│ ║ ║

CН=CH2 CH─CH2Br CH─CH2─OCCH3

O

O O O O

║ ║ ║ ║

CHBr─CH2─OCCH3 2AgOCCH3  CH3CO─CH─CH2─OCCH3 +4H2O

│ │  

CHBr─CH2─OCCH3 CH3CO─CH─CH2─OCCH3

║ ║ ║

O O O

2CH2─CH─CH─CH2

│ │ │ │

OH OH OH OH

Стереоизомерные эритриты – твёрдые, отлично растворимые в воде, сладкие на вкус вещества.

Пентаэритрит (тетраоксинеопентан) С(СН2ОН)4 в природе не встречается. Это твёрдое высокоплавкое (т. пл. 262°С) вещество. Получается синтетически взаимодействием формальдегида с водным раствором ацетальдегида в щелочной среде:

Ca(OH)2

СН3─С=О + 4НСН=О + Н2О C(CH2OH)4 + H─C─OH

│ ║

H пентаэритрит O

муравьиная кислота

Пентиты и гекситы

CH2─CH─CH─ СН─CH2 CH2─CH─CH─ СН─СН─CH2

│ │ │ │ │ │ │ │ │ │ │

OH OH OH OH ОН OH OH OH OH ОН ОН

пентит гексит

Твёрдые, растворимые в воде вещества, сладкие на вкус. Для каждого из спиртов известно много стереоизомеров. Некоторые пентиты и гекситы встречаются в природе, например пентит адонит (в Adonis vernalis), стереоизомерные гекситы – маннит, дульцит, сорбит, идит. Все они имеют нормальный углеродный скелет и могут быть получены восстановлением соответствующих сахаров, которые являются их моноальдегидами.

НЕПРЕДЕЛЬНЫЕ СПИРТЫ

Одноатомные ненасыщенные спирты.

Олефины не могут нести гидроксил при углероде во втором валентном состоянии.

\ \

Структуры С=С─ неустойчивы и изомеризуются в С─С─ (правило Эльтекова ―

/ │ /│ ║

ОН Н О

Эрленмейера). Лишь в некоторых случаях такая изомеризация в заметной степени обратима и мы имеем дело с таутомерным равновесием:

\ \

С=С─ Û С─С─

/ │ /│ ║

ОН Н О

Для структур, в которых не несущий гидроксила непредельный атом не связан с электронооттягивающими группами (─ С─, NO2  и др.), правило Эльтекова-Эрленмейера

 О

Имеет полную силу. Поэтому виниловый спирт и его гомологи не существуют, а при попытках их получить – перегруппировываются в ацетальдегид (и соответственно его гомологи) или в кетоны:

СН2=СН → СН3─ С─Н

│ ║

ОН О

Причина перегруппировки – проявление того же (мезомерного) эффекта, что и в хлористом виниле, но в этом случае подходящего до конца – до полной передачи электронных пар – и являющегося таким образом +Т-эффектом:

Н  Н Н

**  _ │ │

СН2=С─ О─Н →  СН2─С=О Н+ → СН3─ С=О

**

Эффект этот протонизирует водород гидроксила и создаёт у второго ненасыщенного атома углерода с его δ- зарядом удобное место атаки для иона водорода. В результате происходит изомеризация – переход протона к углероду.

Однако алкоголяты, а также простые и сложные эфиры винилового спирта не только существуют, но в последних двух случаях даже используются в промышленном масштабе в качестве мономеров. Разумеется, их приходится получать не прямым путём. При действии металлического лития или натрия в растворе в жидком аммиаке на ртутное производное ацетальдегида получаются алкоголяты винилового спирта (И.Ф. Луценко):

ClHgCH2─C=O + 2Me → CH2=C─OMe + MeCl + Hg, где Me = Li или Na.

│ │

H H

Простые и сложные виниловые эфиры получают присоединением к ацетилену спиртов (в присутствии КОН) и карбоновых кислот (в присутствии солей двухвалентной ртути, кадмия, цинка):

KOH

ROH + HC≡CH  RO─CH=CH2

Me2+; 70°C

R─C─OH + HC≡CH R─C─O─CH=CH2

║ ║

O O

Из виниловых эфиров особенно важен винилацетат, полимеризующийся гомолитически в поливинилацетат. Последний используется для получения прозрачных пластмасс, в производстве триплекса (склеивание слоёв силикатного стекла) и для получения поливинилового спирта гидролизом поливинилацетата: nCH3COOCH=CH2

 H2O

…- ¾СН2─СН─ CН2─СН─ ─… …- ─СН2─СН─СН2─СН─ ─…─

 │ │ │  │

 СН3С─О  CН3С─О  ОН  ОН

║  ║

O  O  n /3 n/3

поливинилацетат оливиниловый спирт

Аллиловый спирт СН2=СН─СН2ОН – наиболее простой из непредельных спиртов с удалённым от двойной связи положением гидроксильной группы – по свойствам гидроксила мало отличается от алканолов. Само собой разумеется, что наличие двойной связи обусловливает его непредельные свойства и ряд характерных для непредельных углеводородов реакций. Промышленный способ получения аллилового спирта – гидролиз хлористого аллила, получаемого хлорированием пропилена при высокой температуре:

+OH-

CH2=CH─CH3 + Cl2 CH2=CH─CH2Cl CH2=CH─CH2OH

 -HCl

Ацетиленовые спирты

Эти вещества не получили большого значения и изучены сравнительно мало. Назовём из них один пропаргилловый спирт СН≡С─СН2ОН, который в настоящее время проще всего получают по методу Реппе:

CuC≡CCu

НС≡СН + СН2О СН≡С─СН2ОН

Ацетилен

Он обладает обычной спиртовой функцией, при замене гидроксила способен к аллильной перегруппировке; имея ацетиленовый водород, может замещать его, как и ацетилен, на металлы, в частности на серебро и медь.

Бутиндиол НОСН2─С≡С─СН2ОН используется при получении бутадиена-1,3:

H3PO4

НОСН2─С≡С─СН2ОН Н2С——СН2

 - H2O │ │

H2C CH2

\ /

O

NaPO3

Н2С——СН2  CH2=CH─CH=CH2

│ │ - H2O

H2C CH2

\ /

O

 

АРОМАТИЧЕСКИЕ ОКСИСОЕДИНЕНИЯ

 

ФЕНОЛЫ

Термин «фенолы» происходит от старинного названия бензола «фен», введённого Лораном (1837 г.), и обозначает ароматическое вещество, содержащее гидроксил, связанное непосредственно с углеродом ароматического ядра. Фенолы, как и спирты могут содержать в своём составе, как одну, так и несколько гидроксильных групп. В зависимости от чиисла гидроксильных групп в молекуле различают одно-, двух-, трёх- и многоатомные фенолы.

 

Структура и номенклатура.

Фенолы обычно называют как производные простейшего члена этого ряда - фенола. Для метилфенолов имеется специальное название - крезолы.

OH OH OH OH OH OH

Cl OH  гидрохинон

CH3  OH

Фенол о-хлорфенол м-крезол пирокатехин резорцин OH

OH OH

Br Br Cl

Br NO2  2,4,6 - трибромфенол 2-хлор-4-нитрофенол

Физические свойства.

Табл. Фенолы

 

Фенол Т. плавления, °С Т. кип., °С

Плотность, г/см3

Фенол

Крезол

о-, или 1,2-

м-, или 1,3-

п-, или 1,4-

41

30

11

36

182

191,5

202,8

202,5

1,072

1,0465

1,034

1,035

Простейшие фенолы представляют собой жидкости или низкоплавкие твёрдые вещества; из-за образования водородных связей они обычно имеют высокие температуры кипения. Сам фенол заметно растворим в воде (9г. на 100г. воды), из-за оразования водородных связей с водой; большинство других фенолов практически не растворимы в воде. Фенолы - бесцветные вещества, если только они не содержат каких либо групп, обусловливающих появление окраски.

Простейший из фенолов – оксибензол (собственно, фенол) и его гомологи: о-, м- и п-крезолы содержатся в каменноугольной смоле. Дополнительные количества фенола, мировое потребление которого достигает миллионов тонн, получаются из бензола. Для этого используется (всё в меньших масштабах) старый метод щелочного плавления соли бензолсульфокислоты: 300 °C

C6H5SO3Na + Na OH  C6H5OH + Na2SO3

Некоторое количество фенола получают гидролизом хлорбензола перегретым паром (450-500°С) над катализатором – силикагелем, промотированным ионами Cu2+ (Рашиг):

Силикагель: Cu2+

C6H5Cl +H2O C6H5OH +HCl

Наибольшие перспективы развития имеет разложение перекиси кумола (изопропилбензола) разбавленными кислотами. Процесс состоит в следующем:

ООН

СН3─ СН─СН3 СН3─ С─СН3

Н+ │  О2

+ СН3─СН=СН2 → → →

ОН


→ + СН3─ С─СН3

 ║

О

Фенол – слабая кислота с константой диссоциации при комнатной температуре в водном растворе 1,3∙10-10.

Таким образом, он на несколько порядков кислее воды, не говоря уже о жирных спиртах, но гораздо слабее уксусной кислоты (1,8∙10-5). Фенол умеренно растворим в воде (8% при 15°С). Вода растворяется в феноле с образованием жидкого при комнатной температуре раствора. Сам фенол – бесцветное легкоплавкое (+41°С) кристаллическое вещество, вследствие окисления розовеющее на воздухе. Крезолы менее, чем фенол растворимы в воде, подобно фенолу хорошо растворимы в эфире, спиртах, хлороформе, бензоле.

Фенолы хорошо растворяются в водных растворах щелочей в результате образования фенолятов щелочных металлов:

ArOH + NaOH ArO- Na+ + H2O

Гидролиз фенолята (обратная реакция) вследствие слабости кислотных свойств фенола заходит далеко, и требуется избыток щёлочи, чтобы сместить равновесие вправо. Уже двуокись углерода выделяет фенол из раствора фенолята.

Кислотные свойства фенольного гидроксила вызваны мезомерным взаимодействием с ароматическим ядром, что выражается символами:

H

½ H+ H+  H+

O  O O O

½ ║ **

* *


* *

Валентные электроны атома кислорода (в том числе и связывающие водород с кислородом) оказываются частично рассредоточенными в орто- и пара-положения бензольного ядра, а водородный атом гидроксила – протонизированным. Таким образом, бόльшая кислотность фенола (сравнительно со спиртами) – это другая сторона сильного орто-пара-ориентирующего действия гидроксила в реакциях электрофильного замещения

 

Реакции гидроксила фенолов

 

1.    Образование фенолятов (см. выше).

2.    Образование простых эфиров фенолов алкилированием фенолятов:

ArONa + RI → ArOR + NaI

ArONa + (CH3O)2SO2 → ArOCH3 + CH3O─SO2ONa

3.    Образование сложных эфиров фенолов (в отличие от сложных эфиров спиртов) не может быть достигнуто взаимодействием их с кислотами, а только ацилированием фенолов (лучше в щелочной среде) галоидангидридами или ангидридами кислот:

ArONa + Cl─ C─R ArO─ C─R + NaCl

║ ║

O O

O=C─R

ArONa + O ArO─C─R + R─ C─ONa

│ ║ ║

O=C─R O O

4.    Замещение гидроксила на хлор при действии PCl5 протекает гораздо труднее, чем для спиртов, и с плохим выходом. В этом случае происходит главным образом хлорирование в ядро, причём PCl5 превращается в PCl3. С PCl3 в малой степени идёт замещение гидроксила на хлор, а в большей степени – образование трифенилфосфита (эфира фосфористой кислоты). С хлорокисью фосфора POCl3 образуется фениловый эфир фосфорной кислоты.

5.    При перегонке с цинковой пылью фенолы превращаются в углеводороды:

ArOH + Zn → ArH + ZnO

 Реакции ароматического ядра фенолов

 

Гидроксил – один из сильнейших, а в щелочном растворе сильнейший орто-пара-ориентант. В соответствии с этим для фенолов легко проходят реакции электрофильного замещения.

Механизм электрофильного замещения в фенолах обычно отличается от замещения в бензоле, его гомологах и даже в эфирах фенолов. Это отличие связано с лёгкостью гетеролиза связи О─Н, поскольку вместо нестабильного и заряженного σ-комплекса промежуточно получается сравнительно устойчивое соединение с хиноидной структурой типа I:

O¾H O O¾H

½ (1) ║ (2) ½

+ A+

 

/\ ½

H A A

I

При этом установлено, что для большинства реакций фенолов первая стадия – быстрая и обычно обратимая, а вторая – медленная. В ряде случаев соединения типа I были выделены в свободном виде, правда, только для тех фенолов, в которых заняты все орто- и пара-положения (в случае обычных фенолов ароматизация совершается слишком быстро). Например:

OH O

Br ½ Br Br ║ Br

HNO3


½ H3C NO2

Br

Если в феноле о- и п-положения заняты, то может происходить (особенно при нитровании) замена имеющихся заместителей на другие группы. Лёгкость такого замещения увеличивается в следующей последовательности: Br<SO3H<H. Замена карбоксильной группы происходит даже при азосочетании.

Галогенирование фенолов.

В неводной среде галогенирование фенолов при соответствующих соотношениях реагентов приводит к смеси о- и п-галогенфенолов, далее к 2,4-дигалогенфенолам и, наконец, к 2,4,6-тригалогенфенолам (их лучше получать в водной щелочной среде). В случае орто- и пара-замещённых фенолов, например крезолов, занятые заместителем (например, метилом) места галогенированием не затрагиваются.

Бромирование фенола избытком бромной воды проходит по схеме:

OH OH O

½ Br ½ Br Br ║  Br

+3Br2  +Br2

 -3HBr -HBr

Br Br Br

Ориентирующая сила гидроксила, т.е. сообщение гидроксилом нуклеофильной активности п-углеродному атому, такова, что этот углерод и после замещения связанного с ним водородного атома способен воспринять электрофильную атаку электроположительного атома брома. Присоединение второго атома брома закрепляет циклогексадиеновую структуру.

O¾H O

Br ½ Br Br ║ Br


Br Br-Br Br Br + Br-+ H+

Сульфирование фенолов.

Сульфирование фенола при комнатной температуре даёт в основном о-фенолсульфокислоту, при 100°С получается п-изомер, а в более жёстких условиях – 2,4-фенолдисульфокислота.

Нитрование фенолов.

Для получения мононитрофенолов приходится нитровать фенолы на холоду разбавленной азотной кислотой (~30%-ной), лучше всего получаемой смешением водного раствора селитры с серной кислотой (чтобы избежать присутствия окислов азота). Образуется смесь о- и п-нитрофенолов, из которой о-нитрофенол удаляют отгонкой с водяным паром, а п-изомер выделяют кристаллизацией. м-Изомер приходится готовить обходным путём, например из м-нитроанилина через м-нитрофенилдиазоний. 2,4-Динитрофенол проще всего получить гидролизом 2,4-динитрохлорбензола.

Тринитрофенол, называемый пикриновой кислотой, производят в промышленном масштабе, нитруя крепкой нитрующей смесью 2,4-фенолдисульфокислоту, получаемую сульфированием фенола, без выделения её из сульфирующей массы. При этом нитруется не только свободное шестое положение, но и сульфогруппы замещаются на нитрогруппы. Наличие в феноле сульфогрупп защищает его и от окисления и от действия окислов азота.

Нитрозирование фенолов.

 

При действии водного раствора азотистой кислоты фенол нитрозируется в пара-положение:


НО─ + HO─N=O → HO─ ─N=O

Нитрозофенол таутомерен монооксиму п-бензохинона:


HO─ ─N=O ↔ O= =N─OН


Электрофильные замещения в фенолах с образованием углерод-углеродной связи.

Таких реакций известно много. Они используются для получения бифункциональных соединений, например фенолокислот, фенолоальдегидов и фенолоспиртов.

При нагревании фенолята натрия в токе СО2 образуется салициловокислый натрий (реакция Кольбе):

ONa OH O

│ │ C

ONa

+ CO2

При действии на фенолят натрия (избыток щёлочи) четырёххлористого углерода также образуется салициловокислый натрий, а при действии хлороформа – салициловый альдегид:

ONa OH ONa

½ NaOH ½ C

+ CCl4  O + NaCl + H2O

ONa OH H

½ NaOH ½ C

+ CHCl3 O + NaCl + H2O

Действием олефинов на фенолы в присутствии льюисовых кислот получают п-алкилфенолы (частный случай реакции Фриделя-Крафтса):

ОН OH

│ ZnCl2  │

+ RCH=CH2

 

RCH─CH3

C синильной кислотой (или нитрилами) в присутствии хлористого водорода фенолы дают иминоальдегидофенолы или иминокетонофенолы (реакция Геша), а после гидролиза иминогруппы получаются сами оксиоксосоединения:

OH OH OH

│ HCl │ H2O (H+) │

+ XCN

│ │

X─C=NH X─C=O

(X=H, арил или алкил)

Наиболее важная реакция этого рода – реакция фенолов с формальдегидом, которая протекает в присутствии как кислот, так и щелочей. При нагревании фенола (избытка) с формалином и серной кислотой происходит бурная реакция и образуется растворимый в спиртах, ацетоне и сложных эфирах полимер линейного строения – «новолак». При щелочной конденсации фенола с избытком формалина сначала образуется легкоплавкий сравнительно низкомолекулярный полимер «резол», подобно новолаку растворимый в органических растворителях. Это – так называемый термореактивный полимер: при нагревании происходит дальнейшая конденсация свободных оксиметиленовых групп с образованием метиленовых мостов, и полимер приобретает сетчатую структуру. Получаемый «резитол» нерастворим в органических растворителях, но сохраняет некоторую пластичность. При нагревании до 150°С конденсация идёт дальше и получается химически очень устойчивый, неплавкий и нерастворимый полимер – «резит», который можно нагревать до температуры ~300°С. Таковы три стадии процесса конденсации, объединяемые названием «бакелитизация» (по имени изобретателя бакелита – Бакеланда). Обычно резол перед последующей стадии конденсации смешивают с наполнителем (минеральным типа асбеста или органическим типа древесины, лигнина, целлюлозы) или пропитывают им древесину или волокнистые материалы и затем подвергают дальнейшей бакелитизации. Этот открытый в 1909 г. тип феноло-формальдегидных пластмасс и в настоящее время сохранил своё значение.

Химический смысл протекающих процессов выражается следующей примерной схемой:

OH

½ CH2OH


OH OH OH

 ½ ½ ½

+ CH2O OH CH2

½

 ½

CH2OH

½

CH2OH


OH OH OH

½ ½ ½

CH2 CH2  

OH

 OH OH OH OH

½ ½ ½

CH2  …¾CH2 CH2

½                                                                                ½

CH2OH CH2

OH ½

OH ½ OH

½ … CH2

CH2 OH ½

½ CH2

CH2 ½

 ½


Таким образом происходит постепенное «сшивание» метиленовыми мостами всё большего количества молекул фенола в хаотически построенные макромолекулы резола, резитола и, наконец, резита. Химическая стой кость резита объясняется не только тем, что значительное количество активных орто- и пара-положений фенола замещены метиленовыми группами, сколько тем, что в следствие полной нерастворимости бакелита реагенты могут действовать на него только с поверхности.

Алифатические кетоны в кислой среде реагируют с фенолом, образуя ди-n-оксифенилоктаны:

CH3  

(H+) ½

CH3COCH3 + 2C6H5OH    HO¾ ¾C¾ ¾OH + H2O  

½

CH3  

Такой 2,2-бис-(4'-оксифенил)-пропан (т.н. дифенилолпропан) применяется в синтезе пластмасс повышенной теплостойкости, получаемых путём этерификации фенольных гидроксилов ароматическими двухосновными кислотами типа терефталевой.

МНОГОАТОМНЫЕ ФЕНОЛЫ

 

Диоксибензолы

Изомерные диоксибензолы носят следующие названия: о-диоксибензол – пирокатехин, м-изомер – резорцин и п-изомер – гидрохинон. Это хорошо растворимые в воде, твёрдые, лишённые запаха вещества.

Пирокатехин известен как продукт декарбоксилирования при нагревании пиротокатеховой кислоты, находимой в растениях:

t °C

НО─ ─С─ОН →  НО─ + СО2

HO O HO

Пирокатехин – сильный восстановитель, и, окисляясь гетеролитически (например, ионом Ag+), он превращается в о-бензохинон:

OH O

[O]

+ H2O

OH O

Резорцин (м-оксибензол) получают в технике сплавлением со щёлочью м-бензолдисульфоната натрия:

SO3Na ONa

+ NaOH + 2Na2SO3

SO3Na ONa

Резорцин устойчивее своих изомеров к окислению. Кислотные его свойства выражены сильнее, чем у фенола. Уже водородом в момент выделения (амальгама натрия и вода) он восстанавливается в дигидрорезорцин (циклогександион-1,3):

OH O

½ H2C CH2

+ 2H

H2C O

OH CH2

Резорцин ещё легче, чем фенол, воспринимает разнообразные электрофильные атаки, так как обе его гидроксильные группы осуществляют согласованную ориентацию. Поэтому резорцин легко галоидируется, сульфируется, нитруется, нитрозируется и пр. Одно из его главных применений – синтез азокрасителей, в котором он служит азосоставляющей.

При исчерпывающем нитровании резоцина получается тринитрорезорцин, стифниновая кислота:

OH

O2N NO2


½ OH

NO2

 

 

во многом напоминающая пикриновую кислоту. Для карбоксилирования резоцина достаточно нагреть его в растворе бикарбоната натрия:

 ONa OH

½ ½

+ CO2

ONa OH

½

O=C¾OH

Получаемое соединение носит название резоциловой кислоты.

Гидрохинон получают восстановлением п-бензохинона:


О=  =О +  2Н НО─ ─ОН


Как и пирокатехин, гидрохинон – сильный восстановитель, при окислении образующий п-бензохинон.

Пирокатехин и гидрохинон применяются как фотографические проявители, восстанавливающие бромистое серебро до металла.

Полиоксибензолы

Смежный триоксибензол называется пирогаллолом, так как получается пиролизом (декарбоксилированием) галловой кислоты:

HO  HO

HO¾ ¾C¾OH HO¾ + CO2

HO O HO

выделяемой из продуктов гидролиза дубильных веществ типа танина.

Пирогаллол в щелочных растворах легко окисляется даже кислородом воздуха, поэтому такие растворы используются для поглощения кислорода. В фотографии пирогаллол применяется как проявитель.

Симметрический триоксибензол – флороглюцин в виде его производных очень распространён в растительном мире.

Обычно флороглюцин получают гидролизом симметрического триаминобензола (его готовят восстановлением тринитробензола):

H2N  HO

H+

¾NH2 + 3H2O ¾OH + 3NH+


H2N HO

По свойствам флороглюцин похож на резорцин.

1,2,4-Триоксибензол можно синтезировать, присоединяя к п-бензохинону уксусный ангидрид и гидролизуя образовавшийся ацетет.

Гексаоксибензол получают подкислением продукта соединения металлического калия и окиси углерода:

OK OH

KO ½ OK HO ½ OH

 H+

6СО + 6К  + 6K+

KO ½ OK HO ½ OH

OK OH

 


Информация о работе «Оксисоединения»
Раздел: Химия
Количество знаков с пробелами: 48883
Количество таблиц: 13
Количество изображений: 0

Похожие работы

Скачать
47982
3
29

... синтетическим красителям и цели работы. Новые материалы требуют новых красителей, а потому тема по синтезу красителей всегда остаётся актуальной. Цель данной работы – синтез 4-окси-3-карбоксиазобензола, который является представителем большого класса азокрасителей. На примере его получения изучить условия проведения реакций диазотирования 4-окси-3-карбоксиазобензола и реакции. 2. Современная ...

Скачать
181032
8
0

... , причем преобладают кислые. Количество отдельных групп аминокислот в белках зависит от зоотехнических факторов, что и обуславливает их физико-химический состав. Молоко по содержанию незаменимых аминокислот является полноценным. Состав незаменимых АК в некоторых белках % Аминокислоты Идеальный белок Казеин Сывороточные белки молока Белок яйца Белок пшеницы Белок ...

Скачать
74946
1
0

... витамина А - с 22 углеродными атомами и 6 конъюгированными двойными связями. Наличие этого гомолога названного витамином А2, отмечено в жирах пресноводных рыб. БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ КАРОТИНА И КАРОТИНОИДОВ Биологическая активность каротина, т.е. степень способности его оказывать на организм такое же действие, как и витамин А, зависит эффективность процесса его усвоения и ...

Скачать
16549
0
1

... ксантофилл зеаксантин. В независимой от света реакции благодаря включению кислорода происходит обратное превращение зеаксантина в виолаксантин. Возможно, этот цикл служит для удаления излишков кислорода, образующихся при фотолизе воды. В верхушках побегов растений каротиноиды обеспечивают определение направления света и их ориентацию к световому потоку за счет фототропизма. 1.4 Карот

0 комментариев


Наверх