5. Стеклопластик на основе полиимида, стойкий до 670 К, и углепластик, не теряющий механической прочности при 550 К.
6. Изоляционная лента, стойкая при температуре до 500 К.
Недостаток полиимида—повышенное влагопоглощение (1 ... 3% за 30 сут.), поэтому он нуждается в технологической сушке (особенно при изготовлении изделий из пресс-порошков) и защите.
Первыми реактопластами, полученными около 100 лет назад, были фенолформальдегидные смолы (ФФС). Компонентами этих смол являются фенол и формальдегид, реакция поликонденсации которых происходит при нагреве до 450 .. - 470 К. Известны два типа ФФС— резольные и новолачные, несколько отличающиеся по свойствам. Исходным сырьем для ФФС является каменный уголь, что и объясняет дешевизну и постоялый рост производства, особенно в виде теплоизоляционных пенопластов для строительной промышленности. В электронике ФФС широко применяются для изготовления слоистых пластиков, покрытий и красок (лак на основе ФФС называется бакелитовым), деталей электроизоляционной аппаратуры, сепараторов аккумуляторов и т. д.
Удельное сопротивление отвержденной ФФС — 1012 ... ... Ю13 Ом-см, tg= 0,015 при f=106 Гц, электрическая прочность 10 ... 18 МВ/м, =10 ... —11 (50 Гц) и=6 (106 Гц). Диапазон рабочих температур 210 ... 470 К. Композиции на основе ФФС и рубленного углеродного волокна (углепрессволокнит) обладают повышенной нагревостойкостью — кратковременно до 800 К. Широко применяются в радиоэлектронике гетинакс и текстолит—слоистые пластики на основе ФФС с бумажным и тканевым наполнителями. Недостатки ФФС—хрупкость, высокая вязкость олигомеров и высокая температура отверждения.
Эпоксидные смолы — продукт поликонденсации многоатомных соединений, включающих эпоксигруппу кольца
Благодаря высокой реакционной способности этих колец отверждение эпоксидных олигомеров можно осуществить с помощью многих соединений и таким образом варьировать температурно-временные режимы обработки и свойства пластмассы. Для холодного отверждения эпоксидных олигомеров применяют алифатические полиамины в количестве 5 ... 15% от массы олигомера. Жизнеспособность смеси низкая (1 ... З ч), длительность отверждения, наоборот, высокая—24 ч, причем степень полимеризации при этом лишь 60 ... 70% и продолжает увеличиваться еще в течение 10 ... 30 сут.
Реакция отверждения смол с алифатическими полиаминами экзотермична: в большом объеме может произойти саморазогрев до температуры выше 500 К, что приводит к деструкции полимера и растрескиванию изделия. Поэтому предпочтительнее горячее отверждение, которое осуществляют ароматическими полиаминами (15 ... 50% от массы) с нагревом до 370 ... 450 К в течение 4 ... ...16 ч, ангидридом (50..100%, 39…450 К, 12... 24 ч) или синтетическими смолами (25 ... 75%, 420 ... 480 К, 10 мин ... 12 ч). При изготовлении изделий важно избегать как недоотверждения, которое проявляется в повышенных диэлектрических потерях и недостаточной жесткости, так и переотверждения, сопровождающегося потерей эластичности. Достоинства эпоксидов состоят в отсутствии побочных продуктов и очень малой усадке (0,2 ... 0,5%) при отверждении, высокой смачивающей способности и адгезии к различным материалам. Механическая прочность, химическая стойкость, совместимость с другими видами смол и олигомеров (ФФС, кремнийорганическими полимерами), большой выбор отвердителей и других добавок—качества, которые делают эти материалы незаменимыми во многих отраслях техники. Если учесть также их высокие диэлектрические и влагозащитные свойства, становится понятным, почему именно эпоксидные смолы стали основным герметизирующим материалом радиокомпонентов и МЭА и связующим главного слоистого пластика РЭА—стеклотекстолита. Немаловажно, что эпоксидные олигомеры могут быть очищены от примесей, а это сводит к минимуму вредное влияние на поверхность полупроводниковых приборов. Наконец, эпоксидные смолы (отвержденные) оптически прозрачны и широко применяются в оптоэлектронных приборах (фотоприемниках, светодиодах, оптопарах),
Свойства эпоксидных смол изменяют в широких пределах, используя различные добавки, которые делятся на следующие группы:
· пластификаторы—органические соединения — олигомеры, действующие как внутренняя смазка и улучшающие эластичность и предотвращающие кристаллизацию, отделяя цепи полимера друг от друга;
· наполнители—в небольших количествах вводятся для улучшения прочности и диэлектрических свойств, повышения стабильности размеров, теплостойкости;
· катализаторы—для ускорения отверждения;
· пигменты—для окрашивания.
Компаунды могут быть жидкими и порошкообразными, они имеют узкое назначение и поэтому выпускаются многие десятки их типов, которые можно сгруппировать следующим образом: герметики, заливочные, пропиточные, эластичные, тиксотропные.
Недостатки реактопластов: сравнительно высокое значение tg, неприменимость в качестве диэлектриков СВЧ-техники; неполная воспроизводимость технологических свойств олигомеров так как число эпоксигрупп непостоянно, а это сказывается на температуре и длительности отверждения.
СЛОИСТЫЕ ПЛАСТИКИ
Печатные платы (ПП) являются типовыми несущими конструкциями современной РЭА и ЭВА. Печатная плата представляет собой слоистую структуру, в состав которой входит диэлектрическое основание и печатные проводники (медная фольга). Основания ПП изготавливают из слоистых пластиков—композиций, состоящих из волокнистого листового наполнителя — бумаги, ткани, стеклоткани, пропитанных и склеенных между собой различными полимерными связующими. Слоистые пластики отличаются от других материалов тем, что применяемый наполнитель располагается параллельными слоями. Такая структура обеспечивает высокие механические характеристики, а использование полимерных связующих—достаточно высокое удельное электрическое сопротивление, электрическую прочность и малое значение tg6.
В зависимости от материала связующего и наполнителя различают несколько типов слоистых пластиков (см. таблицу).
Наиболее дешевый материала диэлектрических оснований— гетинакс — обладает высокими диэлектрическими свойствами, находит широкое применение в бытовой радиоаппаратуре. Его недостатком традиционно считается повышенное влагопоглощение (1,5 ... 2,5%) через слои бумаги или из открытых их торцевых срезов, а также сквозь полимерное связующее. Выпускается гетинакс на основе ацетилированной бумаги, обладающей повышенной влагостойкостью и способной заменить стеклотекстолиты. Гетинакс для ПП имеет толщину 1 ... 3 мм и не расслаивается при нагреве до 533 К (260 °С) в течение 5 ... 7 с.
Наименование слоистого пластика | Наполнитель | Связующее |
Гетинакс | Пропиточная бумага толщиной 0,1 мм | Фенолформальдегидная смола (ФФС) |
Текстолит | Хлопчатобумажная и синтетическая ткани (саржа, бязь, шифон, бельтннг, лавсан) | ФФС |
Стеклотекстолит | Стеклоткани из бесщелочного алюмоборосиликатного стекла | Совмещенная, эпоксидная и ФФС- Совмещенная эпоксикремнийорганическая смола |
Текстолит обладает более высокой прочностью при сжатии и ударной вязкостью и поэтому используется также в качестве конструкционного материала, и его выпускают не только в виде листов, но и плит толщиной до 50 мм.
Стеклотекстолиты благодаря ценным свойствам наполнителя обладают наиболее высокой механической прочностью, теплостойкостью и минимальным влагопоглощением. Они имеют лучшую стабильность размеров, а электрические свойства остаются высокими и во влажной среде. Вледствие необычной твердости поверхности стеклотекстолиты износоустойчивы.
Выпускается несколько десятков марок стеклотекстолитов, предназначенных для разных целей, в том числе повышенной нагревостойкости, тропикостойкости, гальваностойкости, огнестойкости, с металлической сеткой. Обычные марки фольгированного стеклотекстолита облицованы медной фольгой толщиной 35 ... 50 мкм, для полуаддитивной технологии выпускается теплостойкая модификация с фольгой толщиной 5 мкм. Для той же технологии можно применять листовой нефольгированный стеклотекстолит с адгезионным слоем, обладающим неограниченной жизнестойкостью.
Для изготовления ПП по аддитивной технологии требуются диэлектрики с металлическими включениями, образующими центры кристаллизации при химическом меднении. Для этой цели выпускается слоистый пластик—диэлектрик, содержащий мелкодисперсные частицы металлов—Ag или V.
Качество печатных плат характеризуется следующими свойствами.
1. Прочность является одним из основных свойств, поскольку печатные платы выполняют роль не только диэлектрического основания, но и несущей конструкции. Часто требуется вибропрочность, которой, особенно при больших размерах плат, стеклотекстолит не обладает. Следует иметь в виду, что удельная прочность при толщине, большей, чем 1,5 мм, начинает снижаться, так как затрудняется удаление летучих веществ при отверждении и сказывается градиент температуры, который, как и в случае стекла, проявляется в виде микротрещин на поверхности. Это служит еще одним примером размерного эффекта прочности.
2. Нагревостойкость фольгированных слоистых пластиков определяется по отсутствию вздутий, расслаивания и отклеивания фольги, возникающих при пайке. Критерием является время, в секундах, в течение которого разрушения не наблюдаются при нагреве до 533 К (260 °С). Минимальная нагревостойкость — 5 с, у лучших марок—20 с.
3. Стабильность размеров — изменение длины при смене температур в процессе пайки, когда вся плата перегревается примерно до 393 К (120°С); ТКЛР стеклотекстолита при толщине 1,5 мм составляет 8-10-6 К-1, т. е. отличается от ТКЛР меди более чем в 2 раза, поэтому при больших размерах плат возможен обрыв или отслоение фольги. Кроме того, при Т~370 К в эпоксидных смолах наблюдается фазовый переход, выше которого резко возрастает ТКЛР в направлении толщины слоистого пластика, приводящий к обрыву металлизации отверстий. Нестабильность размеров проявляется также в виде неплоскостности — прогиба, коробления, скручивания, которые возникают вследствие механических напряжений.
4. Электрическая прочность стеклотекстолита анизотропна: в продольном направлении она в несколько раз выше, чем в направлении толщины. Причина этому—анизотропия самого материала и наличие микротрещин, уменьшающих эффективную толщину, но не длину и ширину. С увеличением толщины электрическая прочность падает. Так, для плат толщиной 0.5 и 10 мм значение £np соответственно 30 и 10 кВ/мм.
Наименьшее расстояние между соседними проводниками ПП составляет 0,3 мм, при этом допустимое напряжение—50 В. При большем напряжении это расстояние надо увеличивать, например, напряжение 175 В требуют промежутка 0,8 мм, но предельное напряжение 250 В. Для напряжения 500 В печатный монтаж невозможен.
Недостатки фольгированных стеклотекстолитов являются следствием их неоднородной структуры и особенностей используемых материалов. Это—коробление, нестабильность размеров, растрескивание, отслаивание, воспламеняемость, наволакивание смолы при сверлении отверстий. Кроме того, повышение плотности монтажа, использование групповых методов пайки, тяжелые условия эксплуатации требуют использования связующих, обладающих большей теплостойкостью. Наконец, стеклотекстолит из-за высокого tg6 непригоден для СВЧ-техники.
Печатные платы на термопластах. Применение термопластов для изготовления ПП имеет следующие преимущества:
... п.) является адсорбция молекул полимера поверхностью. В зависимости от характера адсорбции и формы цепей в расплаве или растворе свойства поверхностных слоев будут различными. Исследование релаксационных процессов в полимерах, находящихся на границе раздела с твердыми телами, представляет теоретический и практический интерес в связи с проблемой создания конструкционных наполненных полимерных ...
... химических связей, соединяющих основные звенья углеродной цепи, под действием акрилонитрильных группы – СН2—СН- и I CN атомов фтора приводит к повышению термической устойчивости полимеров. Так, в сополимере стирола и акрилонитрила под действием акрилонитрильной группы прочность связи С-С в основной цепи повышается с ...
войства образующихся веществ необходимо для успешной борьбы с ними. Классификация полимеров Классификация полимеров по составу основной цепи макромолекул (наиболее распространенная): I. Карбоцепные ВМС – основные полимерные цепи построены только из углеродных атомов II. Гетероцепные ВМС – основные полимерные цепи, помимо атомов углерода, содержат гетероатомы (кислород, азот, фосфор, серу и т.д.) ...
... (9, 10 класс). Таким образом, можно сделать вывод о том, что разработка элективного курса по данной теме является актуальной. ГЛАВА II. РАЗРАБОТКА ШКОЛЬНОГО ЭЛЕКТИВНОГО КУРСА «ПОЛИМЕРЫ ВОКРУГ НАС» II. 1. Программа курса профильной ориентации для учащихся 9 класса в рамках предпрофильной подготовки по курсу «Полимеры вокруг нас» Пояснительная записка Программа элективного курса «Полимеры ...
0 комментариев