Министерство общего и профессионального образования
Российской Федерации
Уральский Государственный Технический Университет – УПИ
!!!
Вниманию скачавшим! Не посчитан тепловой баланс сушки, за что, собственно, и выставлен "хор."
Посчитаете – будет вам счастье :-)
Regards, Pavel Pokrovsky
Курсовая работа на тему:
Флотационный метод получения
хлористого калия
Выполнил:
студент гр. Х-349
Покровский П.В.
Преподаватель:
Гашкова В.И.
Екатеринбург
2001
Содержание
1. Введение 3
2. Характеристика калийных руд 4
3. Термодинамическая вероятность прилипания частиц
минерала к пузырькам воздуха. 5
4. Главные особенности флотационного процесса 6
5. Элементарный акт флотации 9
5.1. Обзор гипотез элементарного акта флотации 12
5.1.1. Гипотеза избирательной адсорбции кислорода воздуха 12
5.1.2. Гипотеза электростатическая 12
5.1.3. Гипотеза смачивания, или краевого угла 12
5.1.4. Адсорбционная гипотеза Белоглазова 13
6.Флотационная сила 13
7. Максимальный размер пузырьков, флотирующихся на
поверхности пузырьков при пенной флотации 14
8. Флотационные машины 16
9. Флотационные реагенты 16
10. Технологическая схема процесса флотации 17
11. Расчет по процессу флотации 21
11.1. Расчет количественно-шламовой схемы 21
12. Аппаратура для сгущения и фильтрации 24
13. Сушка 26
13.1. Расчеты по процессу сушки 26
14. Сводные балансы 27
14.1. Сводный баланс по хлористому калию на 100 кг
сильвинитовой руды 28
14.2. Сводный баланс технологической воды флотационного
процесса 28
15. Заключение 29
16. Список литературы 30
1. Введение
Разработка и применение различных методов обогащения калийных и полиметаллических руд неразрывно связаны с минеральным составом исходной руды.
Выделить ценные компоненты из руд в богатый концентрат можно, лишь предварительно изучив вещественный и минералогический состав руды, а также физико-химические свойства каждого ее компонента.
Для выбора наиболее эффективного метода обогащения необходимо знать, в какой форме в воде в растворимой или в нерастворимой, а для полиметаллических руд - сульфидной или окисляемой, находится минерал. Содержание в руде извлекаемого компонента, плотность минерала., разные вкрапленности его в другие минералы, магнитные и электрические свойства минералов, их цвет, блеск, твердость и т.д. Все эти свойства могут быть использованы для выбора наиболее эффективной технологической схемы обогащения руды.
Источником добычи калийных солей является месторождение руд или полезных ископаемых, содержащих один или несколько ценных минералов в сочетании с минералами пустой породы.
Обогащением руд называется совокупность процессов первичной обработки минерального сырья, цель которого - отделение всех полезных минералов от пустой породы, а при необходимости - взаимное разделение полезных минералов.
В результате обогащения получают один концентрат или несколько и отвальные хвосты.
Концентратом называется продукт обогащения, содержащий значительно больше (в десятки, а иногда и в сотни раз) ценного компонента по сравнению с рудой. По минеральному и химическому составу он должен удовлетворять определенным требованиям (кондициям).
Хвосты - это отходы обогащения, содержащие главным образом минералы пустой породы и незначительное количество полезных компонентов, извлечение которых при современном уровне технологии и техники обогащения затруднено или экономически невыгодно.
Флотационный метод обогащения заключается в разделении компонентов измельченной руды, основанный на различной способности их удерживаться на границе раздела фаз в жидкой среде. Применяя флотационные реагенты, можно искусственно изменять смачиваемость минеральной поверхности. Плохо смачиваемые водой (гидрофобные) частицы прилипают к пузырькам воздуха, всплывают на поверхность пульпы и образуют минерализованную пену, а хорошо смачиваемые водой (гидрофильные) частицы не прилипают к пузырькам и остаются в объеме пульпы.
Совокупность и последовательность операций переработки отражают на графических схемах обогащения. В зависимости от назначения, схемы могут быть качественными, количественными, шламовыми и т.п. Кроме указанных схем, обычно составляют схемы цепей аппаратов.
В качественной схеме обогащение изображается движением руды и продуктов обогащения последовательно по операциям, указываются некоторые данные о качественных изменениях руды и продуктов обогащения, например крупности. Эта схема дает представление о стадиях процесса, количестве операций, концентратов и контрольных перечисток хвостов, о виде процесса, способе обработки промпродуктов и количестве конечных продуктов обогащения. Если на качественной схеме указать количество перерабатываемой руды, получаемых на отдельных операциях продуктов и содержание в них ценных компонентов, то такая схема уже будет называется количественной, или качественно-количественной. Выход продуктов по операциям определяют в процентах от исходной руды, или в т/сут и в т/ч.
Если в схеме имеются данные о количестве воды на отдельных операциях и в продуктах обогащения, о количестве добавляемой воды, то схема называется шламовой.
Распределение твердого и воды по операциям и продуктам указывается в виде отношения твердого к жидкому (например Т:Ж = 1:3) или в процентах твердого (например 70% твердого). Соотношение Т:Ж численно равно количеству воду (м3), приходящемуся на одну тонну твердого. Количество воды, использованной на отдельных операциях выражается в м3/сут или в м3/час. Часто эти виды схем совмещаются и тогда схема называется качественно-количественной шламовой.
2.Характеристика калийных руд
Сырьем для калийной промышлености стран СНГ в настоящее время служат сильвинитовые руды Верхнекамской и Старобинского месторождений. Минералогическую основу этих руд составляют сильвинит и галит, в качестве примесей присутствуют карналлит, глинистый и нерастворимый в воде остаток, а также бром, йод, рубидий, медь, цинк и другие.
Из всех известных методов обогащения в производстве хлорида калия из сильвинитовых руд наиболее широкое распространение у нас в страние и за рубежом получил метод флотации (от англ. flotation – всплывание). Основываясь на внешних признаках, процесс флотации можно было бы определить как способ разделения, при котором один минераз всплывает на поверхность пульпы и плавает на этой поверхности, а другой тонет и остается внутри пульпы. Однако такое определение исходит только из внешней стороны процесса и не отражает сущности явлений, происходящих при флотации. Кроме того, известные такие флотационные процессы, при которых никакого всплывания или плавания частиц нет. Между тем они обусловлены теми же причинами, что и обычная флотация. Поэтому их совершенно правильно относят к группе флотационных процессов. Поскольку в любом случае процесс связан с наличием поверхностей раздела фаз, то наиболее правильным будет следующее определение понятия "флотация" : флотация – метод обогащения, заключающийся в разделении минералов измельченной руды на основе различной их способности удерживаться на границе раздела фаз в жидкой среде.
Различают три основных вида флотации – пленочную, масляную и пенную.
При пленочной флотации, разделение минералов происходит на плоской поверхности раздела фаз вода-воздух. При этом измельченная руда, подлежащая разделению, насыпается с небольшой высоты на поверхность воды. Несмачиваемые частицы остаются на поверхности и выделяются во флотационный продукт, смачиваемые переходят в водную фазу. Из-за низкой производительности этот процесс не получил широкого применения. Однако эффект пленочной флотации используется при флотогравитационном способе получения крупнозернистого хлористого калия.
Масляная флотация заключается в избирательном смачивании частиц минерала диспергированным в воде жидким маслом. Образующиеся при этом агрегаты частиц, заключенные в масляные оболочки, всплывают на поверхность пульпы. Вследствие незначительной подъемной силы капли масла могут нести лишь небольшой груз частиц, а расход масла при этом очень велик. Поэтому масляная флотация не получила промышленного распространения.
При пенной флотации пульпа насыщается пузырьками газа, обычно воздуха. Флотирующиеся частицы (гидрофобные) закрепляются на пузырьках и выносятся ими на поверхности пульпы, образуя слой минерализованной пены. Гидрофильные частицы остаются в пульпе.
В зависимости от способна насыщения пульпы пузырьками газа пенная флотация подразделяется на обычную пенную флотацию, вакуум-флотацию, химическую флотацию, флотацию кипячением и др.
При обычной пенной флотации в качестве газа используется воздух, причем аэрация пульпы обеспечивается или засасыванием воздуха из атмосферы и диспергированием его в пульпе специальными механическими аэраторами, или же вдуванием в пульпу сжатого воздуха.
Аэрация пульпы при вакуум-флотации осуществляется засчет выделения воздуха из раствора (согласно закону Генри), так как находящаяся под атмосферным давлением вода содержит некоторое количество растворенного воздуха.
При химической или газовой флотации пузырьки газа образуются в результате химического взаимодействия. Например, к руде, содержащей кальций или магнезит, добавляют серную кислоту или кислую соль. При этом на выделяющихся пузырьках углекислого газа флотируются несмачиваемые минералы.
При флотации кипячением процесс идет за счет образующихся пузырьков пара и пузырьков выделяющегося растворенного газа. Этот процесс применялся некоторое время для обогащения графитовых руд.
Флотационные явления проявляются также при амальгировании, эмульгировании, гидрообеспыливании и др.
В калийной промышленности используется обычная пенная флотация.
3.Термодинамическая вероятность прилипания частиц минерала к пузырькам воздуха.
Агрегаты, состоящие из пузырька воздуха и одной или нескольких частиц минерала, относительно устойчивы. Следовательно, при флотации система переходит из менее устойчивого состояния в более устойчивое. Согласно второму закону термодинамики всякий процесс протекает в сторону уменьшения свободной энергии системы самопроизвольно. Поэтому и при флотации свободная энергия системы уменьшается.
Потенциальная энергия частицы пропорциональна ее весу или объему d3 (d - длина ребра куба). Поверхностная энергия частицы пропорциональна величине ее поверхности d2. При уменьшении размера частиц величина ее потенциальной энергии будет падать быстрее, чем величина поверхностной энергии. Например, при уменьшении диаметра частицы в 10 раз потенциальная энергия уменьшается в 1000 раз, а поверхностная только в 100. Поэтому можно всегда взять столь малую частицу, для которой поверхностная энергия будет намного больше потенциальной. В этом случае потенциальной энергией можно пренебречь.
При флотации свободная энергия является поверхностной энергией на границе раздела фаз: твердое тело - газ, твердое тело - жидкость, жидкость - газ. Тогда запас свободной энергии до прилипания частиц к пузырьку:
где площадь поверхности раздела фаз;
-
Запас свободной энергии системы F2 после прилипания частиы к пузырьку, отнесенный к площади прилипания в 1 см2, определяется по следующей формуле:
Уменьшение свободной энергии системы имеет место при условии
На практике пользуются уравнением
Изменение поверхностной энергии системы при элементарном акте флотации, отнесенное к единице площади контакта газ-твердое, называется показателем флотируемости. Видно, что чем больше, т.е. чем гидрофобнее материал, тем лучше идет флотация, так как больше убыль свободной энергии системы.
Таким образом флотация, как и всякий процесс обогащения основана на различиях между свойствами разделяемых минералов, в данном случае - на разнице в удельных поверхностных энергиях. Отсюда и вытекают некоторые особенности флотационного процесса.
4.Главные особенности флотационного процесса.
Первая особенность флотации заключается в том, что в отличие от других методов обогащения, не существует принципиальных ограничений ее использования для разделения любых минералов. Если гравитационными процессами нельзя разделять минералы с одинаковыми или близкими удельными весами, а магнитной сепарацией нельзя обогащать руды, в которых минералы имеют одинаковую или близкую магнитную восприимчивость, то флотация принципиально применима для обогащения любых полезных ископаемых.
Эта универсальность флотационного процесса объясняется двумя причинами:
1.Удельная поверхностная энергия минералов зависит как от их химического состава, так и от строения решетки минералов. Поскольку различные минералы обязательно отличаются один от другого или составом, или строением решетки, то они должны отличаться и по величине поверхностной энергии на границах раздела минерал - газ и минерал - жидкость.
2.Если различие в удельных поверхностных энергиях недостаточно для хорошего разделения минералов, то его можно увеличить нанесением на поверхность минералов тончайших покрытий с помощью реагентов. Например покрытие поверхности сульфидных частиц пленкой ксантогената плотностью 15-30% от сплошного мономолекулярного слоя резко меняет их поверхностную энергию.
При использовании других процессов различия между свойствами минералов (например разницу в удельных весах разделяемых минералов или разницу в магнитной восприимчивости) нельзя увелить простыми и дешевыми средствами.
Практика подтверждает положение с принципиальной возможности применения флотации для разделения любых минералов.
Вторая особенность флотационного способа - возможность применения его только для разделения мелких частиц, у которых потенциальная энергия значительно меньше поверхностной. Обычной пенной флотацией полезные минералы с плотностью больше 5 г/см3 практически не флотируются при крупности зерен, превышающей 0.2-0.3 мм. Минералы с малой плотностью (каменный уголь, самородная сера) при пенной флотации могут флотироваться при крупности до 0.6 мм. В специальных флотационных процессах крупность флотируемого материала может быть значительно повышена. Так, при обогащении калийных сильвинитовых руд крупность частиц крупнозернистого концентрата находится в пределах от 0.3 до 0.8 мм.
Средний состав сильвинитовых руд, % (табл. 1)
таблица 1
Месторождение | KCl | NaCl | MgCl2 | CaSO4 | н.о. | H2O |
Верхнекамское | 25,5 | 68,3 | 0,3 | 1,9 | 2,3 | 0,6 |
Старобинское | 22,2 | 67,8 | 1,4 | 1,6 | 6,7 | 0,6 |
Однако нужно отметить, что состав руд отдельных участков, в частности Верхнекамского месторождения, иногда значительно отличается от приведенных данных.
Сильвин KCl в калийных рудах встречается в виде молочно-белых кристаллов, чаще он имеет янтарно-желтую окраску и все оттенки красно-бурых тонов.
Хлорид магния в сильвинитовой руде входит в состав карналлита. Кристаллы карналлита содержатся в виде разностей от полупрозрачного до желтого и краснобурого цвета.
В отличие от сильвинитовых руд других месторождений для руд Старобинского месторождения характерно повышенное (до 13%) содержание карбонатно-глинистых включений.
Нерастворимый остаток относится к полидисперсным системам: большая часть его (40-60%) представлена фракцией –0.01+0.001 мм, количество глинистой фракции с размером частиц менее 0.001 мм составляет 13-20%. Составляющие остаток породы всегда содержат карбонаты, преимущественно доломитовые и относятся к доломитовым мергелям и глинам, иногда встречаются разности с избытком кальция (Верхнекамское месторождение):
таблица 2
Cоставляющие нерастворимого остатка | % |
SiO2 | 38,5-45,0 |
Al2O3 | 10,5-12,5 |
Fe2O3 | 4,4-4,9 |
TiO2 | 0,7-0,9 |
CaO | 9,0-19,1 |
MgO | 6,5-9,1 |
SO3 | 0,1-3,5 |
CO2 | 13,0-17,8 |
При дальнейших расчетах мы будем пользоваться данными, полученными для Верхнекамского месторождения.
Бром – постоянный элемент всех солевых месторождений, так как входит в состав морской воды и при ее концентрировании распределяется между рассолом и выпадающими в осадок солями. Причем бром, как обычно, изоморфно замещает хлор в минералах. Содержание брома в сильвинитовых рудах Верхнекамского месторождения изменяется от 0.04 до 0.08%. Количество лития в рудах составляет 1.1×10-4 – 5.5×10-3%.
Имеющая в калийных рудах газы (водород, метан, некоторые предельные углеводороды, сероводород, двуокись углерода, азот и др.) находятся в двух формах: микрогазоносной, обусловленной наличием газов в кристаллах солей, и макрогазоносной, связанной с нахождением относительно больших количеств газов в макротрещинах, кавернах и различного рода полостях соленосных руд.
При получении хлорида калия методами обогащения следует учитывать и некоторые другие свойства сильвинитовой руды:
1) Объемный вес руды 2.10 т/м3;
2) Коэффициент разрыхления:
первоначальный 1.3-1.45
остаточный 1.1-1.2;
3) Максимальную крупность кусков до 150 мм;
4) Насыпной вес руды после дробления 1.4-1.6 т/м3.
Твердость некоторых минералов указана в таблице 3.
таблица 3
Минерал | Номер по шкале твердости | Минерал | Номер по шкале твердости |
Тальк | 1 | Апатит | 5 |
Сильвин | 1.5-2 | Пирит | 6-6,5 |
Галит | 2 | Кварц | 7 |
Карналлит | 2-3 | Корунд | 9 |
Кальцит | 3 | Алмаз | 10 |
Ниже приведены пределы прочности на сжатие для некоторых горных пород и минералов, а также для составляющих сильвинитов руды Верхнекамского месторождения калийных солей:
таблица 4
Горные породы, минералы | Предел прочности | Горные породы Верхнекамского месторождения | Предел прочности | |
Базальты | 20-30 | Березниковский участок | ||
Медная руда | 11-26 | Сильвинит Кр.П | 3,58 | |
Кварциты | 20-22 | Сильвинит АБ | 2,72 | |
Граниты | 12-18 | Карналлит В | 3,07 | |
Магнитный железняк | 8-18 | Галит | 3,54 | |
Мрамор | 5,5-15 | Дурыманский участок | ||
Бурый железняк | 4-12 | Сильвинит Кр.П | 2,83 | |
Известняки | 4-10 | Сильвинит АБ | 2,22 | |
Песчаник | 3,4-10 | Галит | 3,08 | |
Сфалерит | 1 | Балаховцевский участок | ||
Галенит | 0,45 | Сильвинит Кр.П | 2,24 | |
Сильвинит АБ | 1,9 | |||
Галит | 2,65 | |||
Поскольку продукт обогащения сильвинитовых руд – хлорид калия является конечным продуктов процесса и не подвергается дальнейшим превращениям, то основным требованием на стадии измельчения является равномерность зерен. Эта задача лучше может быть решена при измельчении в стержневых мельницах (табл.5)
таблица 5
Гранулометрический состав руды после солемельницыРазмер частиц, мм | Выход, % | |||
на БКРУ-2 | на СКРУ-2 | |||
+10 | 18,6 | 10,6 | ||
+15 | 8,7 | 11,3 | ||
+3 | 6,9 | 9,8 | ||
+2 | 10,9 | 13 | ||
+1 | 8,8 | 19,6 | ||
+0,7 | 13,8 | 5,2 | ||
+0,5 | 10,6 | 11,8 | ||
+0,28 | 8,7 | 9 | ||
+0,074 | 8,7 | 9,6 | ||
-0,074 | 5,3 | 4,1 | ||
5.Элементарный акт флотации
Поверхность раздела двух фаз обладает свободной поверхностной энергией. Величина этой энергии зависит от площади межфазновой поверхности и величины удельной поверхностной энергии, которая является специфической константой, определяемой свойствами соприкасающихся фаз. Поверхностная энергия возникает в том случае, когда силы, действующие на молекулы поверхностного слоя со стороны молекул первой фазы, не равны силам, действующим со стороны молекул второй фазы
Равнодействующие сил на поверхностную молекулу со стороны воды равны R1, со стороны молекул воздуха - R2, cуммарная равнодействующая RC = R1×R2 (RC > 0). Для молекулы, показанной на рис. в объеме жидкости RC = 0.
В этом случае для "подъема" молекулы из внутренней части фазы на поверхность надо совершить работу против молекулярных сил. Количественным эквивалентом работы, затраченной на "подъем" всех молекул, находящихся в поверхностном слое на площади 1 см2, будет удельная поверхностная энергия σ? Эрг/cм2. Свободная энергия молекулы, "поднятой" в поверхностный слой, аналогичная потенциальной энергии тела, поднятого на известную высоту: если при подъеме тела затрачивается работа против сил земного притяжения, то при "подъеме" в поверхностный слой - работа против равнодействующей силы молекулярного притяжения.
Так как молекулярные силы имеют небольшой радиус действия, то поверхностной энергией обладают молекулы, находящиеся в очень тонком поверхностном слое, толщина которого лишь немного превышает размеры одной-двух молекул. На перемещение молекулы в объеме ниже этого слоя уже не требуется затраты работы против сил молекулярного притяжения, так как равнодействующая всех сил равна нулю.
Величина удельной поверхности зависит от величины различия между полярностями соприкасающихся фаз: чем больше это различие, тем больше удельная поверхностная энергия на границе фаз. Например, поверхностная энергия на границе раздела двух полярных фаз и на границе раздела двух неполярных фаз будет малой величиной, а на границе раздела полярной и неполярной фаз - большой.
Мерой полярности фазы могут служить такие ее свойства, как диэлектрическая постоянная, дипольный момент молекул, внутреннее давление и другие так называемые молекулярные свойства фазы.
Газы, и в частности воздух, имеют низкую диэлектрическую постоянную на границе, поэтому на границе раздела воздуха с разными жидкостями удельная поверхностная энергия будет более высокой для жидкости с большими диэлектрическими постоянными (табл. 6)
таблица 6
Зависимость удельной поверхностной энергии от диэлектрических постоянных соприкасающихся фаз.
Соприкасающиеся фазы | Диэлектрическая постоянная фазы | Разность диэлектрических постоянных | Удельная поверхностная энергия между фазами | |
Воздух | Жидкость | |||
Воздух - вода | 1 | 80,4 | 79,4 | 72,8 |
Воздух - нитробензол | 1 | 36 | 35 | 43,9 |
Воздух - гексан | 1 | 1,8 | 0,8 | 18,5 |
Эта закономерность справедлива также для поверхностей раздела жидкость - твердое и газ -твердое. Например, удельная поверхностная энергия на границе раздела полярный минерал -вода будет малой величиной, так как обе фазы полярны и поэтому разницы в полярности фаз невелика.
Взаимная растворимость жидкостей также связана с различием в их полярности: если разница в полярности большая, то взаимная растворимость мала, и наоборот. Поэтому между взаимной расторимостью жидкостей и удельной поверхностной энергией должна существовать качественная зависимость: чем больше взаимная растворимость жидкостей, тем меньше удельная поверхностная энергия на границе раздела этих жидкостей и наборот (табл. 7)
таблица 7
Зависимость поверхностной энергии на границе двух жидкостей от их взаимной растворимости
Соприкасающиеся жидкости | Растворимость в воде, % | Удельная поверхностная энергия на границе раздела |
Вода - ненасыщенные углероды | 0 | 40-50 |
Вода - бензол | 0,6 | 35 |
Вода - анилин | 3,3 | 8 |
Вода - изобутиловый спирт | 10 | 1,8 |
Вода - метиловый спирт | - | 0 |
Всякая поверхность двух фаз стремится к самопроизвольному сокращению и внешне это проявляется так, как будто на поверхности раздела фаз существует упругая растянутая пленка, стремящаяся сократиться. Отсюда возникли понятия "поверхностное натяжение" и "сила поверхностного натяжения".
Численно удельная поверхностная энергия, выраженная в эрг/см2, всегда равна удельному поверхностному натяжению, выраженному в динах на один сантиметр. Водные растворы солей увеличивают поверхностное натяжение (табл. 8)
таблица 8
Поверхностное натяжение водных растворов KCl и NaCl при 18С, 10-3 Н/м.
Концентрация соли в растворе, % | Поверхностное натяжение | |
KCl | NaCl | |
1 | 72,4 | 72,7 |
5 | 73,6 | 73,95 |
10 | 74,75 | 75,51 |
20 | 77,25 | - |
Поверхностное натяжение водных растворов KCl – NaCl в присутствии флотореагентов уменьшается. Причем, чем выше концентрация флотореагентов, тем ниже поверхностное натяжение раствора.
Поверхностное натяжение на границе жидкость – газ зависит также от состава газа. Так, поверхностное натяжение расплавленного хлорида калия при 800 градусах Цельсия на границе с различными газами изменяется следующим образом:
газ | D*10^-3 Н/м |
CO2 | 96,9 |
N2 | 95,5 |
CO | 93,4 |
O2 | 91,1 |
5.1.Обзор гипотез элементарного акта флотации
Для объяснения причин избирательного закрепления разных минералов на межфазовой поверхности было высказано несколько гипотез:
5.1.1.Гипотеза избирательной адсорбции кислорода воздуха
В начальный период развития пенного флотационного процесса флотировали только сульфидные минералы. Закрепление сульфидов на пузырьках воздуха объясняли сродством серы к кислороду. Предполагалось, что растворенный в воде кислород воздуха адсорбируется на поверхности сульфидов, образуя газовую пленку и частица оказывается закрепленной на пузырьке. Позднее эта гипотеза была опровергнута, так как оказалось, что сульфиды могут флотироваться инертными газами, а минералы, не содержащие серы, также могут закрепляться на пузырьках воздуха. Тем не менее кислород воздуха имеет очень важное значение для флотации сульфидов, но основная его роль заключается в окислении поверхностного слоя сульфидов.
5.1.2.Гипотеза электростатическая
В этом случае закрепление объясняли тем, что пузырек и флотирующая частица имеют электрические заряды разного знака. При экспериментальной проверке оказалось, что частицы графита и пустой породы имели заряды одного знака, однако флотировался только графит. Позднее несостоятельность этой гипотезы была доказана и теоретически. Заряд поверхности частиц играет важную роль при флотации, но не ту, которую приписывали ему сторонники этой гипотезы.
5.1.3.Гипотеза смачивания, или гипотеза краевого угла.
Способность минералов закрепляться на поверхности раздела газ – жидкость зависит от смачиваемости их жидкостью. Чем сильнее минералы смачиваются водой, тем хуже они флотируются, и наоборот. Так как смачиваемость характеризуется величиной краевого угла, то эту гипотезу называют также гипотезой краевого угла. Гипотеза смачивания включает в себя две трактовки элементарного акта флотации. Первая исходит из представления о силах поверхностного натяжения и рассматривает силы, действующие на частицу. Такую трактовку называют еще "силовой". Вторая трактовка основывается только на представлении о существовании поверхностных энергий на границах фаз. Возможность закрепления частицы при этом оценивается на основе второго закона термодинамики, т.е. как показано выше, по величине свободной энергии системы до и после закрепления частицы. Вторая трактовка является наиболее правильной (строгой) и называется термодинамической. Выводы и формулы обеих трактовок идентичны.
5.1.4.Адсорбционная гипотеза К.Ф. Белоглазова
Гетерополярные молекулы коллектора закрепляются на поверхности флотируемых частиц, причем углеводородные концы молекул обращены в водную фазу. Такое ориентированное закрепление происходит вследствие возникновения сильных связей между полярной частью молекулы коллектора и полярным минералом.
Закрепление покрытых коллектором частиц на поверхности пузырька объясняется уменьшением поверхностной энергии, так как в этом случае поверхность раздела воздух – вода, обладающая большой удельной поверхностной энергией, как бы заменяется поверхностью раздела воздух – углеводород с низкой поверхностной энергией. Закрепление частицы на междуфазовой поверхности по гипотезе Белоглазова в энергетическом отношении эквивалентно адсорбции того числа молекул гетерополярного вещества, которое находится на грани минерала, контактирующей с газообразной фазой. Поэтому элементарный акт флотации рассматривается как адсорбция гетерополярных молекул и на него распространяются закономерности, установленные для процесса адсорбции. Вследствие этого, гипотеза Белоглазова может быть названа адсорбционной. Основные исходные ее предпосылки, как признавал и сам автор, не вполне точны. Адсорбционную гипотезу можно рассматривать как частный случай гипотезы смачивания.
6.Флотационная сила
Флотационной силой называется проекция сил поверхностного натяжения , приложенных к частице по периметру смачивания, на направление, по которому действует сила, отрывающая частицу от поверхности раздела газ – жидкость.
Если отрывающей силой является сила тяжести, то флотационной силой будет вертикальная составляющая сил , приложенных по периметру смачивания.
Так как флотационная сила пропорциональна периметру смачивания или диаметру частицы, а сила тяжести – объему частицы или диаметру в третьей степени, то при уменьшении размера частицы флотационная сила будет уменьшаться медленнее, чем сила тяжести. Например, при уменьшении диаметра частиц в 10 раз флотационная сила уменьшится в 10 раз, а сила тяжести – в 1000 раз. Поэтому, если удельная флотационная сила, т.е. сила, действующая на единицу длины периметра, не равна нулю, то всегда можно выбрать частицу столь малых размеров, для которой флотационная сила будет больше силы тяжести. Это важное положение нужно помнить при рассмотрении сил, действующих на частицу.
Возможны три положения частицы малых размеров на поверхности раздела воздух – вода в соответствии с тремя краевыми углами смачивания: тупым, острым и равным нулю.
7.Максимальный размер частицы, флотирующейся на поверхности пузырьков при пенной флотации.
Для осуществления пенной флотации необходимо турбулентное движение пульпы, так как при ламинарном ее движении частицы минералов осаждаются на дно машины.
При вихревом движении пульпа вместе с увлекаемыми частицами и пузырьками перемещается по криволинейным траекториям. Это вызывает появление центробежных сил, под влиянием которых пузырьки воздуха, имеющие меньшую плотность, чем жидкость, начинают двигаться в пульпе от центра вихря к периферии и одновремено тонут под действием силы тяжести. Таким образом, скорости пузырька и частицы до ее закрепления на пузырьке складываются из скорости их переносного движения в пульпе. Так как центробежные силы, возникающие при вихревом движении пульпы, намного больше сил тяжести, то вертикальные составляющие относительных скоростей движения пузырьков и частиц малы по сравнению с радиальными составляющими этих скоростей. Поэтому скоростями всплывания пузырьков и падения частиц можно пренебречь по сравнению со скоростью радиального движения пузырьков к центру вихря.
Вследствие относительного движения пузырька пульпа обтекает его поверхность (рис. 1). Частица после столкновения с пузырьком начинает скользить по его поверхности к кормовой части пузырька, проходя положения 2-6. Вектор абсолютной скорости скользящей частицы будет равен геометрической сумме трех векторов: скорости переносного движения (т.е. скорости движения пульпы), скорости относительного (радиального) движения пузырька в пульпе, скорости относительного движения частицы по пузырьку. Вектор абсолютного ускорения чатицы также равен геометрической сумме трех векторов: ускорения переносного движения пульпы, ускорения относительного движения (скольжения) частицы по поверхности пузырька и кориолисова ускорения (преполагается, что скорость радиального перемещения пузырька VR постоянна, поэтому ускорение относительного движения пузырька в пульпе равно нулю). Подсчеты показывают, что при работе механической флотационной машины ускорение относительного движения частицы по пузырьку во много раз больше переносного движения и кориолисова ускорения. Поэтому в первом приближении можно считать, что абсолютное ускорение частицы равно ускорению скольжения частицы по пузырьку и направлено от центра тяжести к центру пузырька.
рис.1. Закрепление частицы на пузырьке (R – радиус вращения пульпы и пузырька)
Грань частицы, контактирующую с пузырьком, принято называть верхней гранью, а противоположную – нижней гранью.
На частицу будут действовать следующие силы:
1.Центробежная
2.Сила давления воздуха на верхнюю грань частицы
Удельное давление воздуха сложится из гидростатического давления пульпы на уровне точик А, дополнительного движения пульпы на пузырьке в точке А, возникающее вследствие движения пузырька в пульпе (давление лобового сопротивления), дополнительного капиллярного давления, обусловленного поверхностным натяжением и кривизной пузырька.
Отрыву частиц препятствуют следующие силы::
1.Флотационная
,
где периметр площади контакта газ – твердое;
гистерезисный краевой угол в момент отрыва частицы.
Так как при отрыве частицы в условиях пенной флотации периметр смачивания быстро передвигается в сторону газообразной фазы, то гистерезисный угол отрыва может быть больше равновесного. Однако в первом приближении его можно считать равным равновесному, так как ошибка от такого допущения невелика.
2.Сила давления пульпы на нижнюю грань частицы
где площадь нижней грани частицы, принимаемая равной площади сечения частицы;
удельное давление пульпы на нижнюю грань.
Удельное давление пульпы на нижнюю грань будет равно разности между гидростатическим давлением на уровне нижней границы частицы и величиной понижения давления, обусловленной движением пузырька и частицы пульпы.
Если плотность частицы значительно отличается от плотности жидкой фазы, то из всех силы, действующих на частицу в условиях пенной флотации, решающее значение имеют две – флотационная и центробежная силы.
При пенной флотации вследствие появления центробежных сил скорости относительного движения пузырьков по направлению к центру вихря и частиц от центра вихря значительно больше, чем скорости подъема пузырьков и падения частиц в спокойной пульпе. Поэтому в зоне перемешивания имеют место большие скорости скольжения частиц по пузырькам. Ускорения, вызываемые такими скольжениями, по данным приближенной оценки превышают ускорение силы тяжести в 30 – 50 раз.
8. Флотационные машиныИсходный сильвинит подвергается флотации в аппаратах, называемых флотационными машинами, в которых происходит минерализация пузырьков воздуха и образование пеноконцентрационного слоя, который самотеком или пеносъемниками направляется в желоб пенного продукта (концентрата). Гидрофильные минералы пустой породы остаются в камере и удаляются через хвостовое отверстие машины.
Применяемые в практике флотационные машины классифицируют в зависимости от способа аэрации пульпы и подразделяют на три большие группы:
1) механические;
2) пневмомеханические;
3) пневматические.
В механических флотомашинах воздух засасывается в пульпу импеллером через полую трубу. Распределение воздуха по всему объему пульпы и перемешивание ее осуществляется тем же импеллером.
В пневмомеханических флотомашинах воздух засасывается вращающимся импеллером и, кроме того, дополнительно подается в пульпу под давлением по специальным воздуховодным трубам.
В пневматических флотомашинах аэрация пульпы осуществляется только сжатым воздухом, подаваемым от воздуходувок.
Работа всех флотационных машин характеризуется степенью аэрации, которая определяет скорость флотации и ее эффективность.
Размер пузырьков воздуха изменяется в широких пределах и зависит главным образом от типа флотомашины. Так, в механических флотомашинах при оптимальном расходе пенообразователя средний размер пузырьков составляет 0.8-1 мм, а в пневматических – 2.5-4.0 мм. Объемное содержание воздуха в хорошо аэрированной пульпе составляет 20-30%.
Механические флотомашины конструкции института Механобр получили наиболее широкое распространение. Для флотации сильвинита используют усовершенствованную машину механического типа ФКМ-63, снабженную решеткой и циркуляционным желобом (рис. 2). Частицы минералов в такой флотомашине выносятся из зоны импеллера на решетку 1, над которой образуется "кипящий" слой из классифицированного материала и взвешенный слой из неклассифицированного материала.
... , 5. Целями деятельности предприятия являются удовлетворение потребностей заказчиков в его продукции, услугах и работах, а также получение прибыли для развития собственной производственной деятельности. Основной вид деятельности: добыча полезных ископаемых, производство и реализация калийных минеральных удобрений, поваренной соли. Кроме того, предприятие осуществляет ремонтно-строительные работы, ...
... экспорт аммиака и азотных удобрений, что позволит снизить уровень затрат по переработке грузов в портах отгрузки и повысить соответственно эффективность экспорта. Россия занимает 2-ое место в мире по производству калийных удобрений. Это обусловлено тем, что в нашей стране находятся одни из самых богатых месторождений калийных солей в мире. Основной вид калийных удобрений - хлорид калия. Почти ...
... повреждений и износа составных частей оборудования, а также трудоемкостью ремонтных работ, системой ТОиР предусматривается проведение текущего, капитального и остановочного ремонтов. 1.4.1 Требования, предъявляемые к техническому обслуживанию и ремонту стержневой мельницы МСЦ 3,2 – 4,5 В течении первых десяти дней работы мельницы после ремонта следует останавливать не реже одного раза в смену ...
... управления своевременно выявляют отклонения, которые возникают между отдельными элементами организационной системы). 3. Рекомендации по совершенствованию системы организации В результате анализа теоретических и практических аспектов проблемы действия законов на примере ОАО «Сильвинит» нами предложены следующие рекомендации по совершенствованию системы организации: 1. Необходимо создать ...
0 комментариев