2. Собрать лабораторную установку в соответствии со структурной схемой (рис. 2).

3. Снять амплитудную модуляционную характеристику, для чего:

а) включить установку и установить режим несущей часто­ты;

б) на вход модулятора подать модулирующее напряжение от звукового НЧ-генератора с частотой FΩ= 1000 Гц;

в) подключить к выходу ВЧ (антенне) измеритель коэффици­ента глубины модуляции и осциллограф;

г) к измерителю коэффициента глубины модуляции (гнездо "Выход огибающей") подключить измеритель коэффициента нели­нейных искажений;

д) увеличивая амплитуд модулирующего напряжения UΩ от "0" до появления перемодуляции сигнала, измерить коэффициент глубины модуляции m;

е) результаты измерений занести в табл. 1.

ж) по данным табл. 1 построить зависимости m = f (UΩ);



Рис.1. Принципиальная схема лабораторной установки


Рис.2. Структурная схема лабораторной установки

4. Снять частотную модуляционную характеристику, для че­го:

а) сохранить режим работы передатчика, установленный для выполнения предыдущего пункта работы;

б) установить модулирующее напряжение UΩ при FΩ= 1000 Гц таким, чтобы коэффициент глубины модуляции m = 0,7;

в) изменяя частоту модулирующего напряжения FΩ от 20 Гц до 20000 Гц, измерить коэффициент глубины модуляции m ;

г) результаты измерений занести в табл. 2.

д) по данным табл. 2 построить графики зависимости m = f (FΩ ).

Таблица 1

UΩ

0 1 2 3 4 5 6 7 8
m 0 0,2 0,44 0,6 0,82 0,9 1 1 1

Таблица 2

FΩ

50

1000

2000

4000

10000

15000

17000

19000

20000

m

0,3

0,7

0,75

0,732

0,349

0,196

0,136

0,13

0,09


Содержание отчета

Цель работы

Содержание работы

Структурная схема лабораторной установки.

Принципиальная схема лабораторной установки.

Таблицы результатов измерений и вычислений.

Графики снятых зависимостей.

Выводы и обоснования по результатам исследований.


Контрольные вопросы

Поясните необходимость управления колебаниями радиочастоты передатчика

2. Что такое модуляция? Назовите виды ее.

3. Что такое амплитудная модуляция?

4. Назовите способы осуществления амплитудной модуляции.

5. Напишите уравнение амплитудно- модулированных колебаний.

6. Назовите спектры частот модулирующих колебаний.

7. Отчего зависит ширина спектра частот при амплитудной модуляции?

8. Что такое боковые частоты и боковые полосы?

9. Нарисуйте принципиальную схему модуляции изменением напряжения смещения и поясните ее работу.

10. Как выбрать положение рабочей точки на характеристике электронного прибора?

11. Зачем необходим нелинейный элемент в схеме амплитудной модуляции?

12. В чем заключаются особенности модуляции изменением напряжения смещения?

13. Нарисуйте схему базовой модуляции и поясните принцип работы.

14. Поясните особенности базовой модуляции.


Приложение 1.

1. ВИДЫ И АНАЛИЗ АМПЛИТУДНОЙ МОДУЛЯЦИИ

Радиочастотные колебания, создаваемые радио­передатчиком и излучаемые его антенной в виде электромагнит­ных волн, используются для передачи информации потому, что они легко распространяются на большие расстояния.

Сообщения, которые необходимо передавать, чаще всего пред­ставляют собой низкочастотные колебания. Так, механические ко­лебания звука, преобразованные микрофоном в электрические, представляют собой колебания низкой частоты. Такие колебания не могут распространяться на большие расстояния. Поэтому спектр низкочастотного сигнала необходимо перенести в область радиочастот. Для этого необходимо осуществить управление ими.

Процесс управления колебаниями радиочастоты с помощью ко­лебаний низкой частоты называется модуляцией.

Модуляция осуществляется с помощью специального устройст­ва, называемого модулятором. На один вход модулятора подается напряжение радиочастоты, на другой — низкочастотный переда­ваемый сигнал. На выходе модулятора получается модулирован­ное колебание.

Радиочастотные колебания, осуществляя перенос сигнала, сох­раняют его свойства. Они называются несущими.

Радиочастотные колебания характеризуются тремя параметра­ми: амплитудой, частотой и фазой. Они связаны соотношением i = IHcos(ωt + φ).

Для осуществления модуляции необходимо изменять во вре­мени один из параметров радиочастотного колебания в соответст­вии с передаваемым сигналом. В зависимости от того, какой из параметров радиочастотного колебания изменяется, различают амплитудную, частотную и фазовую модуляцию.

При работе передатчика в импульсном режиме для осуществ­ления модуляции изменяется один из параметров импульсов. Та­кая модуляция называется импульсной.

Для передачи телеграфных сигналов изменяют один из пара­метров радиочастотных колебаний в соответствии с телеграфным кодом. Радиотелеграфную модуляцию называют манипуляцией. Различают соответственно манипуляцию амплитудную, частотную и фазовую.

Амплитудной модуляцией называется процесс изменения амп­литуды колебаний радиочастоты в соответствии с изменением амп­литуды колебаний низкой частоты передаваемого сигнала.

Передаваемое колебание, например речь, музыка, является сложным колебанием. И его можно рассматривать как сумму простых гармонических составляющих колебаний различных амп­литуд, частот и фаз.

Для простоты анализа рассмотрим модуляцию одним тоном частоты Ω, т. е. когда перед микрофоном звучит однотонное коле­бание одной частоты. График его можно представить в виде гар­монического (синусоидального или косинусоидального) колеба­ния, как показано на рис. 1, а аналитически записать выражени­ем uΩ=UΩ cos Ωt. При амплитудной модуляции по закону измене­ния модулирующего колебания, в данном случае по закону cos Ωt, должна изменяться амплитуда тока радиочастоты. Это означает, что во время положительного полупериода звукового колебания амплитуда радиочастотного тока возрастает (точки 2—4 на рис. 1), а во время отрицательного полупериода — уменьшается (точки 4—6 на рис. 1).

Рис. 1. Временная диаграмма амплитудно-модулированных колебаний

И
зменение амплитуды радиочастот­ных колебаний математически можно выразить следующим обра­зом. Уравнение тока в антенне или в выходной цепи модулируе­мого каскада до модуляции имеет вид i = IНЕСсоsωHt. Это колебание называется несущим. В процессе модуляции амплитуда тока IНЕС получает приращение ΔIНЕС, причем это приращение изменяется по закону изменения модулирующего сигнала ΔIНЕС cos Ωt.

Рис. 2. Графики амплитудно-модулированных при различной глубине модуляции:

m 1(в,г)

Тогда выражение тока радиочастоты при модуляции принимает вид

i = ( IНЕС + ΔIНЕС cos Ωt) соsωHt.

Выполняя дальнейшее преобразование выражения тока моду­лированных колебаний, получаем

i = IНЕС ( 1 + ΔIНЕС / IНЕС cos Ωt) соsωHt = IНЕС ( 1 + m cos Ωt) соsωHt .

Отношение приращения амплитуды тока несущей частоты при модуляции ΔIНЕС к его значению до модуляции IНЕС обозначают буквой m и называют коэффициентом глубины модуляции или глу­биной модуляции.


Рис.3. Спектр частот при амплитудной модуляции

Значение коэффициента глубины модуляции m зависит только от амплитуды модулирующего колебания. Например, при передаче речи или музыки — от громкости звука. При линейной модуляции коэффициент m прямо пропорционален амплитуде напряжения мо­дулирующего сигнала m= aUΩ, где a — коэффициент пропорцио­нальности. На рис. 2 приведены временные диаграммы амплитудно-модулированных колебаний при различных коэффициентах модуляции m. При m = 0 модуляции нет. При m = 0,5 (50%) ампли­туда напряжения модулирующих колебаний такова, что вызывает изменение амплитуды радиочастотных колебаний до половины первоначального значения. При m = l ( UΩ= Uω) (стопроцентная модуляция) амплитуда радиочастотных колебании увеличивается в 2 раза. В этих двух случаях огибающая амплитуд модулиро­ванных колебаний точно (без искажении) воспроизводит форму сигнала. При дальнейшем увеличении амплитуды напряжения сиг­нала m > l (UΩ> Uω ) получается перемодуляция. Во время отри­цательного полупериода сигнала часть колебаний радиочастоты срезается (точки 1—2 на рис. 2,б) и форма огибающей модули­рованных колебаний искажается. Возникают нелинейные искаже­ния формы передаваемого сигнала. Следовательно, для осуществ­ления амплитудной модуляции без искажений коэффициент мо­дуляции m не должен превышать единицы.

Выражение для тока амплитудно-модулированных колебаний можно представить в следующем виде:

I =Iанесcos ωнеct+0,5 т Iанес cos (ωнеc + Ω) t + 0,5 т Iанес cos (ωнеc - Ω) t.

Видно, что промодулированное по амплитуде колебание явля­ется сложным и состоит из трех составляющих:

1) колебания несущей частоты ωнеc с амплитудой Iанес , такой же, как и до модуляции;

2) колебания с частотой ωнеc + Ω и амплитудой 0,5 Iанес , назы­ваемого колебанием верхней боковой частоты;

3) колебания с частотой ωнеc - Ω и амплитудой 0,5 Iанес , называе­мого колебанием нижней боковой частоты.

Графически спектр колебаний, промодулированных по ампли­туде низкочастотным колебанием одной частоты Ω , можно изобра­зить, как показано на рис. 3,а. Видно, что при амплитудной мо­дуляции одним тоном частоты и спектр модулированного колеба­ния содержит три гармонических колебания — несущую и два боковых, каждое из которых находится на расстоянии, равном частоте модулирующего колебания.

Но речь или музыка являются сложными колебаниями. Их можно представить состоящими из гармонических колебании. Тог­да при модуляции сложным колебанием модулированное колеба­ние содержит столько нижних и верхних боковых составляющих, сколько их имеется в спектре модулирующего сигнала. В резуль­тате в составе модулированного колебания будет две полосы час­тот: нижняя боковая и верхняя боковая (рис. 3,б).


Информация о работе «Лабараторные работы по генерированию»
Раздел: Цифровые устройства
Количество знаков с пробелами: 35341
Количество таблиц: 11
Количество изображений: 30

0 комментариев


Наверх