2. СЕТОЧНАЯ МОДУЛЯЦИЯ

Сеточной модуляцией называется управление колебаниями радио­частоты изменением напряжения на управляющей сетке лампы по закону изменения модулирующего сигнала.


Рис.4. Схема модуляции на сетку смещения

Модулирующее напряжение можно вводить в цепь любой сет­ки—управляющей, экранирующей или защитной. При модуляции на управляющую сетку различают две разновидности модуляции:

а) изменением напряжения смещения и б) изменением напряже­ния возбуждения, т. е. усилением модулированных колебаний.

Модуляция изменением смещения на управляющей сетке лам­пы осуществляется включением модулирующего напряжения в цепь управляющей сетки последовательно с напряжением смеще­ния, как показано на рис. 4. В результате такого включения напряжений в цепи сетки будут действовать три напряжения: пос­тоянное напряжение смещения ЕC, напряжения возбуждения ра­диочастоты uC=UCcosωt и модулирующее напряжение звуковой частоты uΩ =UΩcosωt.


Рис.5. Графики напряжений и токов при сеточной модуляции

Рассмотрим физические процессы в генераторе при модуляции на сетку смещением. Сначала после включения источника питания в цепь сетки включается напряжение смещения ЕC. Значение его выбирают таким, чтобы исходная рабочая точка находилась на нелинейном участке характеристики лампы Ia = f(eC) (в точке 0 на рис. 5). Затем включается напряжение возбуждения несущей частоты uC= UC cosωt (точка 1 на оси времени на рис. 5). При действии в цепи сетки двух напряжений в цепи анода ток будет протекать в виде периодической последовательности импульсов с постоянной амплитудой и углом отсечки θ = 90°. В составе этих импульсов имеется первая гармоника анодного тока Ia1. Затем включается модулирующее напряжение uΩ =UΩcosωt (точка 2). Частота модулирующего напряжения Ω во много (десятки тысяч раз) меньше несущей частоты ω. Поэтому мгновенное значение модулирующего напряжения по сравнению с несущей изменяется настолько медленно, что за один период несущей его можно счи­тать неизменным. Это дает возможность еще считать, что моду­лирующее напряжение по отношению к напряжению несущей час­тоты проявляется как постоянное напряжение смещения. Отсюда и название: модуляция изменением напряжения смещения. Но это напряжение смещения изменяется по звуковому закону. В даль­нейшем рабочая точка перемещается по характеристике лампы в соответствии с изменением модулирующего напряжения.

Таким образом, в результате изменения напряжения смещения амплитуда импульсов анодного тока, угол отсечки θ , а следова­тельно, и амплитуда первой гармоники анодного тока изменяются по звуковому закону, вследствие чего и осуществляется амплитуд­ная модуляция (точки 3, 4, 5 и 6 на рис. 5).


3. МОДУЛЯЦИЯ НА БАЗУ ТРАНЗИСТОРА

В
транзисторных каскадах передатчиков одуляция на базу мо­жет осуществляться как изменением напряжения смещения, так и изменением напряжения возбуждения.

Рис.6. Схема базовой модуляции смещением

Для осуществления базовой модуляции смещением модули­рующее напряжение вводится в цепь базы транзистора последова­тельно с напряжением смещения и напряжением возбуждения, как показано на рис. 6. Так как для осуществления модуляции не­обходим нелинейный элемент, то напряжение смещения выбира­ется таким, чтобы рабочая точка в исходном режиме находилась левее начала характеристики (точка А на рис. 7,а). При этом в цепи базы протекает незначительный отрицательный ток IБ 0 (рис. 7,а). Транзистор закрыт, и в цепи коллектора ток не про­текает.

Р

ис.7.Физические процессы при модуляции на базу смещением ( а,б,в)


Рис.7. Физические процессы при модуляции на базу смещением (г, д, е)

Если в цепи базы кроме напряжения смещения и напряжения возбуждения включено и звуковое напряжение uΩ =UΩcosωt, то результирующее напряжение еБ = ЕБ 0 + UΩcosωt + Uω cos ωt . Так как напряжение звуковой частоты изменяется значительно медлен­нее, чем напряжение возбуждения, то напряжение звуковой частоты проявляется по отношению к напряжению возбуждения, как напря­жение смещения. Поэтому при модуляции рабочая точка будет пере­мещаться по характеристике, как показано на рис. 7,г (точки А— A'). В результате изменяются амплитуда импульсов коллекторно­го тока и угол нижней отсечки θ (рис. 7,д). Поэтому в нагрузоч­ном колебательном контуре амплитуда тока будет изменяться по закону звуковой частоты (рис. 5.9,е). Ток в цепи базы во время положительного полупериода звукового напряжения протекает в виде импульсов меняющейся полярности. Во время отрицательного полупериода ток в цепи базы—постоянный отрицательный.

Модуляционные характеристики коллекторного тока при базо­вой модуляции приведены на рис. 8. Зависимость первой гар­моники коллекторного тока IK1 от напряжения смещения EБ назы­вается статической модуляционной характеристикой. Она имеет нижний и верхний изгибы за счет изгибов статических характери­стик транзистора. На основном рабочем участке статические мо­дуляционные характеристики практически прямолинейны.

Рис. 8. Модуляционные ха­рактеристики коллекторного тока при базовой

модуляции смещением

Рабочую точку в режиме мол­чания надо выбирать на середине прямолинейного участка модуля­ционной характеристики, что дос­тигается выбором соответствующе­го напряжения смещения ЕБ. В ре­жиме максимальной мощности ге­нератор работает в оптимальном режиме (точка Iк1макс на рис. 8). Как видно из характеристик, моду­лируемый генератор при базовой модуляции все время работает в недонапряженном режиме, дости­гая оптимального режима только в моменты максимумов звукового напряжения. Поэтому КПД кол­лекторной цепи генератора при базовой модуляции смещением низкий, что ограничивает применение этого вида модуляции.

Базовая модуляция находит применение в качестве элемента комбинированной коллекторной модуляции.

При базовой модуляции возбуждением по закону изменения модулирующего напряжения изменяется амплитуда напряжения в цепи базы, а напряжение базового смещения и коллекторное на­пряжение не изменяются. При этом происходит усиление модули­рованных колебаний. Поэтому она возможна в режимах колеба­ний класса В, так и в режиме колебаний класса А. Однако режим колебаний класса А из-за низкого КПД применять нецелесообразно.

Достоинство базовой модуляции возбуждением в том, что мо­дуляционная характеристика при соответствующем выборе режи­ма генератора может быть более линейной, чем при базовой мо­дуляции смещением. Кроме того, при выборе угла отсечки θ =90° можно получить углубление модуляции, то есть в коллекторной цепи 100%-ную модуляцию при глубине модуляции в базовой цепи меньше единицы.



Информация о работе «Лабараторные работы по генерированию»
Раздел: Цифровые устройства
Количество знаков с пробелами: 35341
Количество таблиц: 11
Количество изображений: 30

0 комментариев


Наверх