1. Способы нейтрализации отработавших газов в выпускной сис­теме

Существует несколько способов нейтрализации отработавших газов в выпускной системе автомобиля:

1.Окисление отработавших газов путем подачи к ним дополнитель­ного воздуха в термических реакторах. Термические реакторы уста­навливают на многих японских и американских двигателях. Термиче­ский реактор представляет собой теплоизолированный объем со специ­альной организацией течения отходящих газов, устанавливаемый в вы­пускной системе двигателя и осуществляющий термическое доокисление токсичных компонентов за счет собственного тепла отходящих газов. Термическая нейтрализация не зависит от вида сжигаемого топлива, наличия присадок и позволяет использовать в двигателях этилирован­ный бензин. Повысить температуру отработавших газов в реакторе можно, уменьшив теплопотери применением проставок-экранов, тепло­изоляцией корпуса реактора, использованием тепла реакции окисле­ния, а также кратковременным уменьшением угла опережения зажига­ния. Реакторы особенно эффективны на режимах богатой смеси при больших нагрузках, не выходят из строя со временем, однако не дают полного окисления СО и СН и не восстанавливают NOx, поэтому приме­няются как дополнительные устройства перед каталитическим нейтра­лизатором.

2.Поглощение токсичных компонентов жидкостью в жидкостных ней­трализаторах. Этот способ не получил широкого распространения из-за малой эффективности и необходимости частой замены жидкости.

3.Применение каталитических нейтрализаторов и сажевых фильтров (на автомобилях с дизельными двигателями) – в настоящее время наи­более актуальный.

2. Нейтрализации отработавших газов в выпускной сис­теме бензиновых двигателей

Эволюция каталитических нейтрализаторов

В конце 60-х годов, когда мегаполисы Америки и Японии стали буквально задыхаться от смога, инициативу взяли на себя правитель­ственные комиссии. Именно законодательные акты об обязательном снижении уровня токсичных выхлопов новых автомобилей вынудили про­мышленников усовершенствовать двигатели и разрабатывать системы нейтрализации.

В 1970 году в Соединенных Штатах был принят закон, в соответ­ствии с которым уровень токсичных выхлопов автомобилей 1975 мо­дельного года должен был быть в среднем наполовину меньше, чем у машин 1960 года выпуска: СН — на 87%, СО — на 82% и NOх — на 24%.

Аналогичные требования были узаконены в Японии и в Европе.
Первым делом инженеры бросились совершенствовать системы питания и зажигания. Но было очевидно, что добиться столь существенного улучшения ситуации с токсичностью без применения дополнительных устройств просто невозможно.

В 1975 году на американских машинах появились первые каталити­ческие нейтрализаторы отработавших газов — тогда еще двухкомпонент­ные, так называемого окислительного типа. Двухкомпонентными они на­зывались потому, что могли нейтрализовать только два токсичных ком­понента — СО и СН. Окислительными — потому, что происходившие реак­ции представляли из себя окисление (то есть фактически дожигание) молекул СО и СН с образованием углекислого газа СО2 и воды Н2О.

На американских автомобилях 1975 года появились транзисторные системы зажигания с высокой энергией искры и свечи с медным сердеч­ником центрального электрода — это свело к минимуму пропуски зажи­гания и последующие вспышки несгоревшего топлива в нейтрализаторе, которые грозят оплавлением керамики.

В 1977-м к нему добавили "противоазотную" секцию, а еще через пару лет объединили все в едином корпусе, дав неправильное название "трехступенчатый" нейтрализатор. На самом деле речь идет не о сту­пенях, а о трех подавляемых классах вредных веществ.

К 1990 году нейтрализатор переехал вплотную к выпускному кол­лектору, чтобы быстрее нагреваться до рабочих температур (300ºС) – тем самым уменьшить вредные выбросы на стадии прогрева.

В 1995 году фирма ”Эмитек” разработала технологию подогрева ка­тализатора мощным электрическим сопротивлением. Основанная на этом принципе модель катализатора ”6С” (или ”Эмикэт”) была установлена на ”БМВ-Альпина В12”.

Ну и, наконец, в 2000 году появилась цеолитовая ловушка углево­дородов (СН), задерживающая их при пуске мотора и лишь после на­грева до 220°С отдающая на "съедение" готовому к работе катализа­тору.

Устройство и принцип действия каталитических нейтрализаторов

Современные каталитические нейтрализаторы – это трехкомпонент­ные каталитические нейтрализаторы.

Трехкомпонентный каталитический нейтрализатор представляет со­бой корпус из нержавеющей стали, включенный в систему выпуска до глушителя. В корпусе располагается блок носителя с многочисленными продольными порами, покрытыми тончайшим слоем вещества катализа­тора, которое само не вступает в химические реакции, но одним своим присутствием ускоряет их течение.

Подпись: Рисунок 1 – Керамические соты

Химикам известно множество катализаторов - медь, хром, никель, палладий, родий. Но самой стойкой к воздействию сернистых соединений, ко­торые образуются при сгорании содержащейся в бензине серы, оказалась благородная платина. На долю катализаторов приходится до 60% себестои­мости устройства. Именно благодаря им происхо­дят необходимые химические реакции – окисление монооксида углерода (СО) и несгоревших углево­дородов (СН), а также сокращение количества окиси азота (NOx). В трехкомпонентном нейтрализаторе платина и палладий вызывают окис­ление СО и СН, а родий ”борется” с NOx. Кстати, родий – субпродукт при получении платины – наиболее ценный в этой троице.

Чтобы увеличить площадь контакта каталитического слоя с вы­хлопными газами, на поверхность сот наносится подложка толщиной 20-60 микрон с развитым микрорельефом.

 

Как правило, носителем в нейтрализаторе служит спецкерамика - монолит со множеством продольных сот-ячеек, на которые нанесена специальная шероховатая подложка (рис.1). Это позволяет максимально увеличить эффективную площадь контакта каталитического покрытия с выхлопными газами - до величин около 20 тыс. м2. Причем вес благо­родных металлов, нанесенных на подложку на этой огромной площади, составляет всего 2-3 грамма!!! Керамика сделана достаточно огне­упорной – выдерживает температуру до 800-850 ºС. Но все равно при неисправности системы питания и длительной работе на переобогащен­ной рабочей смеси монолит может не выдержать и оплавиться - и тогда каталитический нейтрализатор выйдет из строя. Именно поэтому так проблематично выглядит использование каталитических нейтрализаторов с керамическим носителем на карбюраторных двигателях.

Подпись: Рисунок 2 – Соты нейтра-лизаторов MetalitВпрочем, все шире в качестве носителей каталитического слоя используются тончайшие металлические соты (рис.2). Это позволяет увеличить площадь рабочей поверхности, полу­чить меньшее противодавление, ускорить разо­грев каталитического нейтрализатора до рабо­чей температуры и, главное, расширить темпе­ратурный диапазон до 1000-1050ºС. Соты ней­трализаторов Metalit, изображенного на ри­сунке 2, сделаны из тонкостенного (толщиной всего 0,04 мм, а не 0,15 мм, как у керамики) листа хромоалюминиевой стали, для лучшей адгезии каталитического слоя легированной редкоземельным металлом иттрием. Такой нейтрали­затор выдерживает пиковые температуры до 1300ºС.

Делают это на Западе, конечно же, не для применения карбюрато­ров - там они почти забыты. Просто с по­явлением современных двигателей, рабо­тающих на переобедненных смесях, растут требования и к каталитическим нейтрали­заторам - они должны выдерживать более жесткие условия, которые керамике уже не по зубам.

Упрощенно ход реакций в нейтрализа­торе выглядит так:

CH+O2 -> CO2+H2O; NO+CO -> N2+CO2;

Подпись: Рисунок 3 – Реакции в нейтрализатореCO+O2 -> CO2; NO+H2 -> N2+H2O.

В результате токсичные со­единения CO, CH и NOx окисля­ются или восстанавливаются до углекислого газа СО2, азота N2 и воды Н2О (рис.3).

Широкое использование нейтрализаторов «взорвало» мировой рынок благородных металлов: 35% потребляемой платины, 45% палладия, 90% родия идет в автомобильные выпускные системы.

Разогрев каталитического нейтрализатора

На первый взгляд может показаться, что установка катализатора решает все экологические проблемы. Однако, температура, при кото­рой катализатор начинает действовать (температура активации), на­ходится в пределах 250–350°С. Время же, необходимое для разогрева, может достигать нескольких минут и зависит от типа автомобиля, способа его эксплуатации и температуры воздуха. Холодный катализа­тор практически неэффективен – следовательно, необходимо уменьшить время достижения температуры активации.

Подпись: Рисунок 4 – Каталитический нейтрализатор с электропо-догревомК 1995 году фирма ”Эмитек” разработала технологию подогрева катализатора мощным элек­трическим сопротивлением. Основанная на этом принципе модель катализатора ”6С” (или ”Эми­кэт”) была установлена на ”БМВ-Альпина В12”. Подогреватель на металлической опоре крепится внутри катализатора (рис.4); его мощность – от 0,5 до 2, иногда 4 кВт, в зависимости от вели­чины сопротивления (от 0,05 до 0,35 Ом). Для примера, элемент в 1,5 кВт разогревает катали­затор до 400°С за 10 секунд.

Компания ЭCИA пошла другим путем и предложила пусковой катализатор. Он размещается в специальном ответвлении выпу­скной системы, имеет меньшие, чем основной, размеры и, стало быть, прогревается быстрее, после чего приводит в рабочее состояние ”стар­шего брата”.

Подпись: Рисунок 5 – Оптимум нейтрализа¬ции всех трех ком¬понентов (около 80%) достигается только в узкой зоне стехиометрического состава смесиЧтобы снизить вредные выбросы при пуске хо­лодного двигателя, иногда применяют также встроенный в катализатор адсорбер углеводоро­дов. Как только рабочая температура достигнута, последние ”освобождаются” и окисляются самим катализатором. Среди подобных устройств можно назвать нейтрализатор ”Эдкэт” фирмы ”Делфай” или ”Пума” фирмы ”Корнинг”.

Обратная связь

Трехкомпонентный нейтрализатор наиболее эф­фективен при определенном составе отработавших газов (рис.5). Это значит, что нужно очень точно выдерживать состав горючей смеси возле так называемого стехиометрического отношения воздух/топливо, значение которого лежит в узких пределах 14,5 — 14,7. Если горючая смесь бу­дет богаче, то упадет эффективность нейтрализации СО и СН, если беднее — NOX.

Подпись: Рисунок 6 – Современная компоновка систе-мы нейтрализации с системой бортовой диагностики OBD-II (on-board diagnostics)Поддерживать стехиометрический состав горючей смеси можно было только одним способом — управлять смесеобразованием, немедленно полу­чая информацию о процессе сгорания, то есть, организовав обратную связь (рис.6). Решение стало эпохальным.

В выпускной коллектор поместили специально разрабо­танный кислородный датчик — так назы­ваемый лямбда-зонд (на Западе принято обозначать греческой буквой λ так называемый коэффициент избытка воздуха, то есть отношение стехиометрического состава смеси к текущему). Он вступает с раска­ленными выхлопными газами в электрохимическую реакцию и выдает сигнал, уровень кото­рого зависит от количества кислорода в вы­хлопе.

 Если кислорода осталось много — значит, смесь слишком бедная, если мало — богатая. А по результатам мгновенного анализа, которым занимается электроника, можно быстро корректировать состав смеси в ту или иную сторону. Напряжение на выходе кислородного датчика при­нимает два уровня. Если смесь бедная, то низковольтный сигнал дает команду на обогащение топливной смеси, и наоборот.

На рис.7 изображен современный трехкомпонентный каталитический нейтрализатор. Второй кислородный датчик нужен для новейших систем бортовой диагностики OBD-II и от­слеживает эффективность нейтрали­зации.

Подпись: Рисунок 7 – Современный нейтрализаторВпервые трехкомпонентные ней­трализаторы с обратной связью и кислородным датчиком появились на двигателях автомобилей Volvo в 1977 году. А сейчас ими оснащены все без исключения автомобили, ко­торые продаются на рынках цивилизованных стран.

Кислородные датчики

Подпись: Рисунок 8 – Кислородный дат-чикДатчик кислорода (рис.8) - он же лямбда-зонд - устанавливается в выхлопном коллекторе таким образом, чтобы выхлопные газы обтекали рабочую поверхность датчика. Он представляет собой гальванический источник тока, изменяю­щий напряжение в зависимости от температуры и наличия кислорода выхлопной трубе. Материал его, как правило, керамический элемент на ос­нове двуокиси циркония, покрытый платиной. Конструкция его предполагает, что одна часть соединяется с наружным воздухом, а другая - с выхлопными газами внутри трубы. В зависимости от концентрации ки­слорода в выхлопных газах, на выходе датчика появляется сигнал (рис.9). Уровень этого сигнала может быть низким (0,1...0,2В) или высоким (0,8...0,9В). Существуют также датчики сигнал на выходе, у которых изменяется от 0,1 до 4,9 В.

Подпись: Рисунок 9 – Зависимость сиг-нала датчика от коэффициен-та избытка воздухаТаким образом, датчик кислорода - это своеобразный переключатель, сообщающий кон­троллеру впрыска о концентрации кислорода в отработавших газах. Контроллер принимает сигнал с лямбда-зонда, сравнивает его со зна­чением, прошитым в его памяти и, если сигнал отличается от оптимального для теку­щего режима, корректирует длительность впры­ска топлива в ту или иную сторону. Таким об­разом, осуществляется обратная связь с кон­троллером впрыска и точная подстройка режи­мов работы двигателя под текущую ситуацию с достижением максимальной экономии топлива и минимизацией вредных выбросов.

Бензиновому двигателю для работы требуется смесь с определен­ным соотношением воздух-топливо. Соотношение, при котором топливо максимально полно и эффективно сгорает, называется стехиометриче­ским и составляет 14,7:1. Это означает, что на одну часть топлива следует взять 14,7 частей воздуха. На практике же соотношение воз­дух-топливо меняется в зависимости от режимов работы двигателя и смесеобразования. Двигатель становится неэкономичным.

Коэффициент избыточности воздуха при работе двигателя посто­янно меняется и диапазон 0,9 - 1,1 является рабочим диапазоном лямбда-регулирования. В то же время, когда двигатель прогрет до рабочей температуры и не развивает большой мощности (например, ра­ботает на холостом ходу), необходимо по возможности более строгое соблюдение равенства  для того, чтобы трехкомпонентный катализа­тор смог полностью выполнить свое предназначение и сокра­тить объем вредных выбросов до минимума.

Лямбда-зонды бывают одно-, двух-, трех- и четырехпроводные. Однопроводные и двухпроводные датчики применялись в самых первых системах впрыска с обратной связью (лямбда-регулированием). Одно­проводный датчик имеет только один провод, который является сиг­нальным. Земля этого датчика выведена на корпус и приходит на массу двигателя через резьбовое соединение. Двухпроводный датчик отличается от однопроводного наличием отдельного земляного провода сигнальной цепи. Недостатки таких зондов: рабочий диапазон темпе­ратуры датчика начинается от 300 ºС. До достижения этой темпера­туры датчик не работает и не выдает сигнала. Стало быть, необхо­димо устанавливать этот датчик как можно ближе к цилиндрам двига­теля, чтобы он подогревался и обтекался наиболее горячим потоком выхлопных газов. Процесс нагрева датчика затягивается, и это вно­сит задержку в момент включения обратной связи в работу контрол­лера. Кроме того, использование самой трубы в качестве проводника сигнала (земля) требует нанесения на резьбу специальной токопрово­дящей смазки при установке датчика в выхлопной трубопровод и уве­личивает вероятность сбоя (отсутствия контакта) в цепи обратной связи.

Указанных недостатков лишены трех- и четырехпроводные лямбда зонды. В трехпроводный кислородный датчик добавлен специальный на­гревательный элемент, который включен, как правило, всегда при ра­боте двигателя и, тем самым, сокращает время выхода датчика на ра­бочую температуру. А так же позволяет устанавливать лямбда-зонд на удалении от выхлопного коллектора, рядом с катализатором. Однако остается один недостаток - токопроводящий выхлопной коллектор и необходимость в токопроводящей смазке. Этого недостатка лишен че­тырехпроводный лямбда-зонд - у него все провода служат для своих целей - два на подогрев, а два - сигнальные. При этом вкручивать его можно так как заблагорассудится.

Ресурс датчика содержания кислорода обычно составляет  50 - 100 тыс. км и в значительной степени зависит от условий эксплуата­ции, качества топлива и состояния двигателя. Повышенный расход масла, переобогащенная смесь и неправильно отрегулированный угол опережения зажигания сильно сокращают жизнь лямбда-зонду. Дольше служат, как  правило, датчики  с  подогревом.  Рабочая  темпера­тура для  них  обычно  315-320°C.  В конструкцию  этих датчиков  включен  нагревающий  элемент,  имеющий на  разъеме свои кон­такты.  Проверку  работоспособности нагревательного  элемента  та­ких  датчиков  можно производить обычным  омметром.  Сопротивле­ние  их  обычно составляет  от 3 до 15 Ом.

Правильно  работающий  лямбда-зонд может многое сказать о том, в каком состоянии находится двигатель и его системы. На некоторых автомобилях с помощью датчика можно достаточно точно отрегулиро­вать содержание СО в выхлопных газах. Неисправный лямбда-зонд не­минуемо вызовет повышенный расход топлива и снижение мощностных характеристик двигателя. Следует отметить, что далеко не все неис­правности лямбда-зонда фиксируются блоком управления, а если фик­сируются, то блок управления переходит в режим управления впры­ском по усредненным параметрам, что тоже приводит к перечисленным выше результатам. Поэтому рекомендуется при малейших подозрениях провести диагностику, а при выявлении неисправности заменить лям­бда-зонд.

Условия нормальной работы каталитических нейтрализаторов

В наши дни каталитические нейтрализаторы распространяются по странам и континентам. Докатились они и до российской глубинки. А здесь их часто встречают... свинцом и ломом. Причина в том, что для нормальной работы катализатора необходимо соблюдать пустяковые по европейским понятиям условия. Посмотрим, какие же это "пус­тячки".

Во-первых, как известно, даже случайная заправка бака этилиро­ванным бензином выводит катализатор из строя. Он окончательно "от­равляется" свинцом - остается только выбросить прибор.

Во-вторых, катализатор эффективно работает только при строгом соблюдении состава топливной смеси - 14,7 весовых частей воздуха на одну часть бензина. Любой карбюратор, даже с электронной систе­мой управления, такой точностью и быстродействием для поддержания требуемого состава смеси не обладает.

Таким образом, катализатор эффективен лишь в сочетании с сис­темой впрыска топлива с электронным управлением. На автомобиле появился микропроцессор, который, анализируя данные о температуре, расходе воздуха через коллектор, оборотах и т.п., а главное - сиг­налы, поступающие от каталитического нейтрализатора, регулирует работу электромагнитных форсунок впрыска топлива. Однако в случае выхода из строя свечи зажигания, перебоев в подаче топлива и т.д. мгновенно нарушается тонкое равновесие состава рабочей смеси - ка­тализатор теряет свою эффективность, причем в некоторых случаях навсегда. Поэтому микропроцессор контролирует работу систем и аг­регатов автомобиля, а о неисправностях сообщает водителю.

Есть и еще одна проблема - каталитический нейтрализатор хорошо справляется с окислами азота, только когда их мало. Упрощенно кар­тина такова: окислов азота тем больше, чем выше температура в ка­мере сгорания, а чем она выше, тем больше КПД мотора. Для борьбы с окислами азота нашли простой выход. Соединили выпускной коллектор со всасывающим патрубком, направив часть выхлопных газов обратно в камеру сгорания со свежей рабочей смесью, что снижает наполнение цилиндров и, следовательно, мощность. Получается, что нейтрализа­тор вредит двигателю.

Но и мотор не остается в долгу. Явный вред катализатору прино­сит так называемое перекрытие клапанов - момент, когда одновре­менно открыты впускной и выпускной клапаны. В цилиндре возникает, так сказать, сквозняк: рабочая смесь вылетает в выхлопную трубу через открытый выпускной клапан и отравляет чувствительный катали­затор. Однако перекрытие клапанов способствует лучшему наполнению цилиндров и повышению мощности мотора, поэтому пока ни один совре­менный двигатель без этого не обходится. Здесь приведены лишь не­которые примеры, показывающие, что в автомобиле все не просто.



Информация о работе «Системы нейтрализации отработавших газов в выпускной системе ДВС»
Раздел: Экология
Количество знаков с пробелами: 40029
Количество таблиц: 5
Количество изображений: 18

Похожие работы

Скачать
146575
5
12

... присадками к топливу, промывка без демонтажа форсунок с помощью специальной установки и промывка на ультразвуковом стенде с демонтажом форсунок. 2. Исследование работы и процесса технической эксплуатации форсунок бензиновых двигателей 2.1 Конструкция электромагнитных форсунок Рассмотрим устройство и принцип действия форсунок на примере форсунки фирмы Бош, а также неисправности которые ...

Скачать
67020
0
0

... ) в атмосферу выбрасывается около 2 тыс. куб. м условного оксида углерода и более 150 т. пыли. Производство цемента и других строительных материалов также является источником загрязнения атмосферы пылью. Основные технологические процессы этих производств - измельчение и химическая обработка шихт, полуфабрикатов и получаемых продуктов в потоках горячих газов всегда сопровождается выбросами пыли и ...

Скачать
63035
16
5

... пар выходя из глушителя связывает между собой механические примеси сажи , тем самым утяжеляя их , не позволяя подниматься в воздушное пространство. 4.2. Расчет потребляемых компонентов для работы окислительного нейтрализатора Для осуществления нормальной работы системы необходимы два основных компонента , которые позволят достаточно полно входить в реакцию окисления азота: а) определяем ...

Скачать
21207
0
0

... в выхлопных газах окиси углерода должно содержаться не более допустимой нормы. Положением о «Государственной автомобильной инспекции» на нее возложен контроль за выполнением мероприятий по охране окружающей среды от вредного влияния автомототранспорта. В принятом стандарте на токсичность предусмотрено дальнейшее ужесточение нормы, хотя они и сегодня в России жестче европейских: по окиси углерода ...

0 комментариев


Наверх