Введение.

1.   Хромосомы и хромосомные болезни.

2.   Стоматологические проявления наследственных болезней и синдромов.

3.   Заключение.

4.   Список литературы.

Введение.

Одним из разделов наследственной патологии (соот­ветствующие больные занимают почти 25 % коечного фонда всего мира) являются хромосомные болезни. К ним можно отнести группу болезней, вызываемых число­выми или структурными изменениями хромосом либо их сочетанием, что обнаруживается при специальном анализе ядер клеток — кариологическом исследовании.

Черепно- лицевые аномалии, в частности морфологические изменения в зубах, могут быть обусловлены хромосомными аберрациями, генной мутацией, а так же совместными действиями многих генов и факторов среды. такие мультифакторные заболевания являются распространенной группой наследственных заболеваний и врожденных пороков развития.

Различные симптомы и болезни, при которых поражается черепно- лицевая область, нередко ассоциируется с изменениями в других органах и системах организма. Следовательно, для современной диагностики, профилактики и лечения необходимо сотрудничество клиницистов различного профиля и генетиков. Стоматологу- педиатору, ортодонту очень важно знать стоматологические проявления наследственных болезней и синдромов. Раннее их выявление совместно с педиатором, генетиком необходимо для определения прогноза и выбора правильного метода лечения.

1. Хромосомы и хромосомные болезни.

У высших организмов связь поколений осуществля­ется через половые клетки. Клетка — единое целое, и все ее структурные и биохимические компоненты тесно вза­имосвязаны между собой. Еще в начале нашего века было установлено, что клетка имеет высокоспециализи­рованные структурные элементы, которые определяют наследственную преемственность свойств организма. Эти­ми элементами являются хромосомы (от греческого слова «хромое» — красящийся), которые включают в себя единицы наследственной информации — гены. Таким об­разом, каждая клетка является хранителем наследствен­ной информации. Клетка имеет цитоплазму и ядро. Функ­ции хранения и передачи наследственной информации в основном связаны с хромосомами клеточного ядра. Ин­формация, содержащаяся в хромосомах оплодотворен­ного яйца, во время индивидуального развития должна быть передана всем клеткам тела. Передача информа­ции от материнской клетки дочерним осуществляет­ся во время клеточного деления при активном участии ядра и цитоплазмы. Специфическое значение в точном распределении хромосом между дочерними клетками принадлежит центросоме и митотическому аппарату клет­ки.

Для каждого биологического вида характерно пос­тоянное число хромосом. У большинства высших орга­низмов каждая клетка содержит диплоидный (2п) хро­мосомный набор. Хромосомы отличаются друг от друга формой и размерами. Совокупность количественных и качественных признаков хромосом, определяемая при микроскопировании в единичной клетке, называется кариотипом.

Нормальное диплоидное число хромосом у человека равно 46. Из-за несовершенства цитологической техники общее число хромосом у человека долго (с 1912 по 1956 г.) считали равным 48. В 1956 г. шведские цитологи J. H. Tijo и A. Levan применив усовершенствованную ци­тологическую методику, на материале культуры фибро-бластов легочной ткани 4 человеческих эмбрионов пока­зали, что модельное число хромосом у человека равно 46. Эти данные в том же году были подтверждены англий­скими цитологами С. Е. Ford и J. L. Hamerton (1956). Эти два сообщения стали началом бурного развития цитогенетики человека.

Среди многих методов изучения наследственной пато­логии цитогенетический метод занимает важное место. С его помощью можно провести анализ материальных основ наследственности и кариотипа человека в норме и при патологии, изучить некоторые закономерности мута­ционного и эволюционного процессов. Все хромосомные болезни у человека были открыты этим методом. Он незаменим для дифференциальной диагностики многих врожденных и наследственных болезней. Овладеть им в условиях клинической лаборатории с соответствующей аппаратурой и реактивами несложно.

Кариотип человека определяется 46 хромосомами. Это число хромосом содержится в соматических клетках, половые клетки имеют набор в 2 раза меньший — 23 хро­мосомы. Из 46 хромосом человека 22 пары одинаковы у мужчин и женщин, их называют аутосомами. Они имеют порядковый номер от 1-го (самая крупная с центромерой в середине) до 22-го (самая маленькая с центромерой у края). В 23-й паре имеется отчетливая половая дифференцировка: в клетках тела у женщин находятся две крупные вполне идентичные друг другу хромосомы X, у мужчин имеется только одна хромосо­ма X, а ее партнером служит маленькая хромосома У. Хромосомы Х и У называют половыми хромосомами.

При цитогентическом исследовании для того, чтобы ответить на вопрос, нормален ли хромосомный набор или имеется какая-либо аномалия, существенное значение приобре­тает правильный отбор метафазных пластинок. Для этого необходимы следующие условия: цельность метафазной пластинки; отсутствие или небольшое число взаимных наложений хромосом, средняя степень их конденсации (спирализации); обособленность метафазных пластинок друг от друга. Соблюдение этих правил позволяет в целом провести правильную идентификацию хромосом. Хромосомный анализ проводят в несколько этапов: визуальный анализ хромосомных препаратов; анализ хромосом с помощью зарисовки; анализ хромосом с помощью фотосъемки и раскладки кариотипа. Данные цитогенетических исследований заносят в специальные бланки — протоколы.

Из всех 23 пар хромосом с помощью рутинного мето­да можно идентифицировать только хромосомы 1; 2; 3;16 и У. Остальные хромосомы трудно различимы. Именно невозможность идентификации каждой хромосомы с помощью рутинного метода существенно ограничивала цитогенетическую диагностику и классификацию хромо­сомных болезней. Только с освоением новых методичес­ких подходов к изучению хромосом удалось, наконец, решить этот вопрос.

Линейная исчерченность хромосом выявляется после воздействия на них некоторых солевых растворов со строго заданным значением рН и определенным темпера­турным режимом и с последующей окраской флюоресци­рующими (Q-окраска) или основными красителями типа раствора Гимзы (G- и С-окраска). Помимо указанных способов окраски хромосом, применяют и другие специ­фические методы, которые позволяют избирательно окрашивать участки тех или иных хромосомных районов.

Наиболее информативным из них является метод С-окраски, который позволяет выявлять плотнокрасящи-еся сегменты, расположенные в центромерных или около-центромерных участках всех хромосом, а также в корот­ких плечах хромосом 13—15; 21—22 и в длинном плече хромосомы Y. С помощью этого метода обнаруживается так называемый структурный гетерохроматин. Значение метода С-окраски состоит в том, что он, выявляя структурный гетерохроматин во всех хромо­сомах, позволяет лучше, чем какой-либо другой метод, оценивать хромосомный полиморфизм у человека, т. е. межиндивидуальные различия по отдельным хромосомам. Для полиморфизма хромосом человека характерны наличие определенного варианта строения хромосомы во всех клетках, его передача от родителей к детям как простого моногенного признака, отсутствие заметного фенотипического эффекта. Уже твердо установлено, что истинный полиморфизм хромосом обусловлен вариабель­ностью в размерах их гетерохроматиновых районов.

Нормальная изменчивость, ранее обнаруживаемая лишь для немногих хромосом набора и у отдельных индивидов, на самом деле явление, широко распростра­ненное. У каждого индивида оно проявляется специфи­ческим сочетанием вариантов хромосом, и неограничен­ное число подобных сочетаний обеспечивает уникаль­ность кариотипа каждого человека.

Использование новых методов современной генетики и генной инженерии позволило медицинским генетикам выявлять и клонировать участки хромосомной ДНК, .отвечающие за проявление наследственных дефектов, и использовать их в качестве основного материала в пренатальной диагностике.

Рассмотрим проблему пола в плане цитогенетики более подробно. В 1949 г. М. L. Вагг и Е. С. Вег при изучении клеток животных установили генетическую разницу между полами. В 1954 г. К. L. Moore и М. L. Вагг эту генетическую особенность подтвердили, исследуя клетки человека. Были обнаружены два типа клеток. В ядрах соматических клеток нормальной женщины была выявлена компактная хроматиновая глыбка, названная половым хроматином, или тельцем Барра, а в ядрах клеток нормального мужчины такая глыбка отсутствова­ла. Впоследствии установили, что обнаруженное тельце представляет собой неактивную хромосому .X. Тельце Барра чаще всего располагается на периферии у ядерной мембраны и его форма варьирует от треугольной до выпуклой. Для выявления полового хроматина обычно применяют анализ эпителиальных клеток в соскобе слизистой оболочки щеки. Наличие или отсутствие тельца Барра характеризует набор хромосом X, а следовательно, и пол индивида. Оказалось, что тельце Барра образуется из одной хромосомы X. Поэтому у женщин обнаружива­ется тельце Барра, а у мужчин — нет. В случае хромо­сомных аномалий телец Барра всегда на одно меньше, чем хромосом X.

Изучение строения и функционирования хромосому человека имеет большое теоретическое и практическое значение для медицинской генетики. Знание того, что представляет собой каждая хромосома человека в хими­ческом, цитологическом и генетическом отношении, важно для правильного понимания происхождения хромосомных нарушений и обусловленных ими аномалий развития, а следовательно, и поиска путей исправления этих отклонений.

Хромосомные болезни клиницисты начали изучать еще до установления точного числа хромосом человека. Например, синдромы Клайнфелтера и Шерешевского — Тернера были четко описаны до открытия хромосомной этиологии этих заболеваний и хорошо известны врачам. К хромосомным болезням относят такие формы патоло­гии, при которых наблюдаются, как правило, нарушения психики и множественные врожденные пороки различных систем организма человека. Генетической основой таких состояний являются хромосомные мутации — численные или структурные изменения хромосом, наблюдаемые в соматических или половых клетках.

Термин «болезнь» по отношению к хромосомным аномалиям, как аутосомных, так и половых хромосом, употребляется не совсем справедливо. Болезнь — это процессуальность, т. е. закономерная смена симптомов и синдромов во времени. Болезнь имеет продрому, начало, стадию полного развития и исходное состояние. Сово­купность же специфических признаков, характеризующих любую хромосомную аномалию, является конституцио-нальной, врожденной и признаки эти непрогредиентны.

Большинство хромосомных болезней возникает спора­дически в результате геномной и хромосомной мутаций в гаметах здоровых родителей или на первых делениях зиготы. Хромосомные изменения в гаметах приводят к развитию так называемых полных, или регулярных, форм нарушения кариотипа, а соответствующие изменения хромосом на ранних стадиях развития эмбриона являют­ся причиной возникновения соматического мозаицизма, или мозаичных организмов (наличие в организме двух или более клеточных линий с разным числом хромосом). Мозаицизм может касаться как половых хромосом, так и аутосом. Мозаики, как правило, имеют более «стертые» формы заболевания, чем люди с измененным числом хромосом в каждой клетке. Так, ребенок с мозаичным вариантом болезни Дауна может иметь нормальный интеллект, но физические признаки этого заболевания остаются.

Число аномальных клеток может быть различным: чем их больше, тем более ярко выражен симптомокомплекс той или иной хромосомной болезни. В некоторых случаях удельный вес аномальных клеток так невелик, что человек кажется фенотипически здоровым.

В некоторых случаях установить мозаицизм оказыва­ется не так просто, поскольку клон аномальных клеток имеет в онтогенезе тенденцию к элиминации. Иначе гово­ря, число таких клеток может быть у взрослого человека относительно мало, в то время как в эмбриональный и ранний постнатальный период их удельный вес был дос­таточно велик, что привело к развитию выраженных клинических симптомов болезни. Однако, несмотря на известные трудности изучения мозаицизма, его открытие и исследование вносят ясность в проблему стертых и рудиментарных форм хромосомных болезней.

В основе классификации хромосомных болезней лежат типы мутаций. Хромосомные мутации (числовые или структурные) возможны в соматических или половых клетках, они возникают в результате числовых или структурных изменений хромосом или их сочетания. Числовые изменения сводятся к наличию добавочных хромосом или отсутствию одной из хромосом. В первом случае говорят о трисомии по какой-либо из 23 хромосом, во втором — о моносомии. Реже можно наблюдать нарушение плоидности хромосомного набора (увеличение на полный гаплоидный набор).

Структурные изменения хромосом у человека хотя и встречаются намного реже, чем численные аберрации, представляют интерес как общетеоретический, так и кли­нический. Можно выделить два основных типа перестроек: внутрихромосомные и межхромосомные. В свою очередь перестройки могут быть сбалансированными, т. е. в геноме присутствуют все локусы, однако их расположение в хромосомах отличается от исходного нормального. Несбалансированные перестройки характеризуются утра­той или удвоением участков хромосомы. Внутрихромо­сомные перестройки, связанные с перестройками внутри одного плеча хромосомы, называются парацентричес-кими. Крайние участки без центромеры называются фрагментами и они обычно утрачиваются в ходе митоза.

Деления — это утрата части хромосомы, происхо­дящая в результате двух разрывов и одного воссоеди­нения с утратой сегмента, лежащего между разрывами. У человека известна делеция хромосомы 5. Такая делеция выражается в синдроме «кошачьего крика». Дупликация—это удвоение сегмента хромосомы, в результате чего клетка организма становит­ся полиплоидной по данному сегменту. Если дупликация находится непосредственно за исходным участком хромо­сомы, то это называется тандем-дупликацией. Кроме того, дупликации могут быть локализованы в других участках хромосомы. Большинство таких перестроек детальны, а те индивиды, которые с ними выжили, как правило, не способны оставить потомство.

В случае инверсии участок хромосомы разворачивает­ся на 180° и разорванные концы соединяются в новом порядке. Если в инвертированный участок попадает центромера, то такую инверсию называют перицентрической. Если инверсия затрагивает только одно плечо хромосомы, то она называется парацентрической. Гены в инвертиро­ванном участке хромосомы располагаются в обратном по отношению к исходному в хромосоме порядке.

К межхромосомным перестройкам относят транс­локации — обмен сегментами между хромосомами. Различают следующие типы транслокаций: 1) реципрокная транслокация, когда две хромосомы взаимно обмени­ваются сегментами; 2) нереципрокная транслокация, когда сегмент одной хромосомы переносится в другую; 3) транслокация типа центрического соединения, когда после разрывов в околоцентромерном районе соединяют­ся два фрагмента с центромерами таким образом, что их центромера соединяется, образуя одну. Транслокацион­ный синдром Дауна возникает именно таким образом. При этом больные имеют выраженную симптоматику болезни Дауна, но в их кариотипе всего 46 хромосом, причем хромосом 21 и Х — две, третья транслоцирована на хромосому группы D (возможно, хромосому 15). Исследование кариотипов их родителей показало, что чаще всего фенотипически нормальные матери имеют 45 хромосом и точно такую же транслокацию хромосомы 21, как и ребенок.

Хромосомные болезни можно классифицировать по тому, какая из систем хромосом — половая или аутосомная — вовлекается в патологический процесс. До настоящего времени точной общепринятой классификации хромосом­ных болезней нет. Это связано со многими причинами, в частности, с тем, что патогенетические механизмы хромосомных нарушений еще не выяснены. Большинство хромосомных аберраций по-прежнему относят к группе синдромов. Лишь некоторые из них можно назвать болез­нями. Это в полной мере справедливо для болезней Дауна и Клайнфелтера.

Какова же общая клиническая характеристика хро­мосомных болезней? Почти все они сопровождаются множественными нарушениями скелета, психики. Отмечаются врожденные пороки наружных и внутренних половых органов, их замедленный рост. Нарушается деятельность нервной, эндокринной и других систем, снижена генеративная функция, наблюдается четкое повышение смертности среди лиц с хромосомными ано­малиями.

Диагностические признаки разделяются на 3 группы. А — комплекс признаков, позволяющих лишь заподоз­рить хромосомную аномалию. Это общие признаки: физическое недоразвитие, ряд дизморфий мозгового и лицевого черепа (деформация ушных раковин и их низкое расположение, микроцефалия, эпикант, высокое небо), косолапость, клинодактилия мизинцев, некоторые пороки развития внутренних органов (сердца, почек, легких). В — признаки встречаются в основном при опре­деленных хромосомных болезнях. Их сочетание позволяет в большинстве случаев диагностировать хромосомную аномалию. Среди характерных, наиболее часто встречаю­щихся признаков этой группы при трисомии хромосомы 18 следует назвать долихоцефалию (89,6% случаев), флексорное положение кистей (96,1 %), «стопу-качалку» (76,2%), короткий и широкий I палец стопы (70,6% случаев); при трисомии по хромосоме 13—расщелину верхней губы и неба (68,7 % случаев), флексорное положение кистей (44,4%), косоглазие (31,4%), дефект скальпа (30,5 % случаев) и др. С — признаки характерны только для одной хромосомной аномалии, например, «кошачий крик»—при синдроме 5р—-, алопеция при синдроме 18р.

Хромосомным болезням свойственна чрезмерная фенотипическая (клиническая) вариабельность. Часто при одних и тех же хромосомных аномалиях клинические признаки выражены по-разному. В качестве примера можно привести болезнь Дауна, при которой поражение психики проявляется слабоумием от легких до тяжелых степеней (дебильность — имбецильность — идиотия). Выраженность клинических проявлений хромосомных болезней зависит от многих причин, среди которых следует отметить генотипические и паратипические фак­торы, состав поражаемых генов, размер аберрации и индивидуальность хромосомы, процент мозаичных клеток в организме и т. д. Иногда при низком содержании! мозаичных клеток клиническая картина бывает стертой." Это особенно часто наблюдается при мозаицизме по половым хромосомам. Обращает на себя внимание и то, что, как правило, клинические проявления у больных с аутосомными аберрациями намного тяжелее, чем у боль­ных с нарушением в системе половых хромосом. Следо­вательно, жизнеспособность больных с аберрациями половых хромосом значительно выше. Среди новорожден­ных с хромосомными аберрациями около 50 % детей имеют аутосомные аномалии, а другие 50 % — аномалии по половым хромосомам, несмотря на то что система аутосом представлена 22 парами хромосом, а система половых хромосом — только одной парой.

Интеллект при аутосомных синдромах нарушается гораздо резче, чем при синдромах, вызванных аномалия­ми половых хромосом.

Клинические и цитогенетические исследова­ния, проводимые у новорожденных с хромосомной патологией, показывают, что жизнеспособность их зависит от типа хромосомного нарушения. Большинство с аутосом­ными трисомиями погибают в первые дни жизни. У боль­ных с аномалиями половых хромосом жизнеспособность, напротив, не снижена. Это связано с тем, что полная клиническая картина у больных данного контингента разворачивается лишь в период полового созревания, когда начинают функционировать гены, определяющие половое развитие организма и формирование вторичных половых признаков. Из других контингентов хромосом­ные- аномалии обнаруживаются: среди детей с олигофренией в среднем у 15 % больных (в основном структурные перестройки); у больных с нарушением половой дифференцировки частота хромосомных нарушений колеблется от 20 до 50 % ( у 50 % из них обнаруживается мозаицизм); у больных с первичной и вторичной аменореей частота хромосомных аномалий колеблется от 10 до 50 % (более 90 % — численные нарушения и мозаицизм); при мужском бесплодии частота аномальных хромосом достигает 10—15% (до 70 %—численные нарушения и мозаицизм). При отягощенном акушерском анамнезе у супружеских пар с повторными спонтанными абортами, мертворождениями или рождением детей с пороками развития сбалансированные перестройки наблюдаются в 5 % случаев.

Для диагностики хромосомных болезней в настоящее время применяют ряд методов медицинской генетики, чаще клинико-генеалогический, цитогенетический (опре­деление полового хроматина и кариотипирование), пато-логоанатомический и дерматоглифический. Некоторые хромосомные болезни можно диагностировать клиничес­ки, не прибегая к другим методам. Например, своеобра­зие клиники синдромов Шерешевского —Тернера и Клайнфелтлера позвлояет опытному клиницисту поставить диагноз без цитогенетического анализа.

Как правило, современная диагностика любого заболевания является комплексной. Кроме традиционных клинических данных, лабораторных исследований, сбора анемнестических данных,, при диагностике наследственных болезней, в частности хромосомных, особое внимание уделяется изучению гениалогии больного. Только около 3-5% их четко наследуется.

Основным методом диагносики хромосомных болезней является цитогенетический, который включает в себя: а) определение полового хроматина; б) определение "барабанных палочек"; в) определение добавочной хромосомы Y с помощью флюоресцентной микроскопии; г) кариоптирование (получение хромосомных наборов). Наиболее точным и достоверным методом исследований является кариологический.

Из вспомогательных методов диагностики хромосомных заболеваний наиболее прост и доступен дерматоглифический метод, применяемый для анализа кожных узоров на ладонях, подошвах и сгибательной поверхности пальцев, так как при хромосомных болезнях наблюдается специфическое изменение кожных узоров.

Основными показаниями для направления на цитогенетическое обследование больного и его родственников являются: 1) наличие лиц с выявленной паталогией полового хроматина; 2) наличие детей с множественными пороками развития; 3) олигофрения в сочетании с чертами внутриутробного дисгенеза или врожденными пороками развития; 4) повторные спонтанные аборты у женщин, мертворожденные дети в анамнезе или дети с пороками развития (обследованию подлежат и мужья); 5) наличие в анамнезе умерших детей с множественными врожденными пороками развития или установленным хромосомным синдромом; 6) наличие структурной перестройки и сбалансированного носительства транслокации или инверсии у матери или отца пробанда; 7) необходимость определения кариотипа плода у женщин с высоким риском рождения ребенка с хромосомной паталогией.


Информация о работе «Наследственные хромосомные стоматологические заболевания»
Раздел: Медицина, здоровье
Количество знаков с пробелами: 45292
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
45091
0
0

... небольшие дефекты не осложняют развитие ребенка. Что касается более крупных дефектов, то чаще всего для излечения требуется восстановительная хирургия. Открытый артериальный проток. До рождения ребенка сердечно-сосудистая система плода устроена так, что кровь обходит неработающие легкие плода, проходя по специальному каналу (артериальному протоку) между легочной артерией, несущей кровь к легким, ...

Скачать
22676
0
0

... ребер   Синдром Кристиана Расщелина неба, краниосиностозы, микроцефалия, артрогрипоз, приведенный большой палец руки.   Лечение расщелин губы и неба, как и многих других врожденных пороков развития хирургическое. В настоящее время для определения метода хирургического вмешательства стоматолог ориентируется только на глубину дефекта тканей. Однако, исходя из общих генетических закономерностией ...

Скачать
83689
1
0

... можно отметить: сотрудничество родителей и педагогов; увеличение объединений – участников программы; взаимодействие с лабораторией проблем дополнительного образования и воспитания; поддержку программы "Одаренные дети" администрацией Центра; в рамках программы начата исследовательская деятельность педагогов. Написаны психологические портреты одаренных детей своих коллективов; проведение ...

Скачать
125375
0
0

... проблем эндокринологии. В 1924 г. В.Д. Шервинский избирается председателем вновь организованного Эндокринологического общества. В 1925 г. В.Д. Шервинский выступил в Российском эндокринологическом обществе с докладом "Развитие эндокринологии России", где отметил большое значение нервной системы для клиники эндокринных заболеваний. Ряд интересных работ В.Д. Шервинский написал в последний период ...

0 комментариев


Наверх