3. Кровозаменители на основе гемоглобина.

Попытки применения растворов гемоглобина в клинических целях предпринимались уже в начале века и были возобновлены в 30 - 40 гг. Эксперименты по введению растворов гемоглобина в различных дозах, концентрациях и при разных степенях кровопотери показали способность последних поддерживать жизнь животных, обеспечивая транспорт кислорода. Однако эти работы выявили также выраженную нефротоксичность этих препаратов.

Одна из основных причин нефротоксичности установлена в 1967 г. после применения растворов гемоглобина, очищенных от стромальных компонентов. Они не повреждали почки. Сделан вывод в том же году, что повреждение почек вызывается стромальной фракцией эритроцитов [3].

Уже рассмотренные выше патофизиологические основы сниженной отдачи кислорода тканям растворами внеэритроцитарного гемоглобина связаны с потерей в процессе выделения очищенного раствора гемоглобина 2,3-дифосфоглицерата, природного специфического регулятора обратимой оксигенации, находящийся внутри эритроцита. Ученые довольно продолжительное время решали эту проблему и в результате пришли к выводу о замене этого регулятора каким-либо другим.

Впервые в качестве необратимого присоединения был описан пиридоксаль-5'-фосфат - коферментная форма витамина В6. Альтернативным путем снижения сродства гемоглобина к кислороду является использование кетокислот, которые также могут необратимо присоединяться к гемоглобину. Это позволило приблизить транспортные характеристики (по кислороду) внеэритроцитарного гемоглобина к физиологическим значениям [3, 14].

Выше уже говорилось о том, что раствор гемоглобина при введении его в кровоток резко увеличивает онкотическое давление, тем самым изменяя гемодинамику. Однако, согласно последним данным, полимеризованный гемоглобин с молекулярной массой 600 000 при концентрации 6г/100 мл обнаруживает сравнительно небольшое онкотическое давление крови порядка 20 мм. рт. ст., что близко к онкотическому давлению крови. Но при концентрации 12г/100мл раствор такого гемоглобина имел онкотическое давление 40 мм. рт. ст. Но в Америке (A.G. Greenburg) создан гемоглобин с молекулярной массой 1млн., который даже в концентрации 14г/100 мл обусловливал онкотическое давление 20 мм рт. ст. При такой концентрации раствор имеет кислородную емкость, равную таковой для цельной крови.

Известно, что с помощью пиридоксальфосфата Р50 полимеризованного гемоглобина онкотическое давление может быть повышено с 15 - 20 до 28 - 30 мм рт. ст. и выше. При специальных мерах предосторожности такие препараты могут сохранять свои кислородпереносящие свойства в течение 2 -12 месяцев при образовании метгемоглобина не более 0,6% в месяц.

В современной литературе по этой проблеме встречаются мнения о том, что полимеризованный гемоглобин с большой и очень большой молекулярной массой является первым реальным кандидатом на преклинические и клинические испытания. Но возникают проблемы, без решения которых нельзя приступать к клиническим испытаниям.

Одна из таких проблем - неясность судьбы этих гигантских молекул в организме.

Предполагают, что они разрушаются в ретикулоэндотелиальной системе опсонинами плазмы и макрофагами. Это, по мнению Greenburg, "отвлекает" иммунологические механизмы от выполнения прямых задач и ослабляет иммунологическую защиту. Кроме того, при массивных инфузиях гигантские молекулы оказывают токсическое действие на ткани как самой молекулой, так и образующимися метгемоглобином и димерами гемоглобина. Внеэритроцитарный гемоглобин слишком быстро выводится из кровеносного русла [6].

В настоящее время обсуждаются следующие пути решения этой проблемы: моделирование эритроцитов путем микрокапсулирования растворов гемоглобина; химическая модификация гемоглобина с получением полигемоглобина и его конъюгатов с биополимерами; внутримолекулярная модификация гемоглобина, препятствующая его диссоциации на димеры.

Важным направлением в современном развитии проблемы создания "искусственной крови" является создание неких микротелец или микрокапсул, содержащих гемоглобин. Тяжелые физиологические последствия разрушения эритроцитов известны давно, и еще в 1971 г. были сделаны первые попытки создания искусственных эритроцитов в виде твердых нейлоновых капсул с гемоглобином (T. Chang). Но первые опыты были неудачны, а перспективную идею вывели из небытия совсем недавно M.C. Farmer и B.P. Garber, создав методику получения липосом. При осуществлении микрокапсулирования растворов гемоглобина для создания искусственных мембран используются, кроме липидов, и синтетические полимеры, некоторые полимеризованные белки. Толщина получаемых мембран сравнима с толщиной мембран эритроцитов.

Основная проблема - короткий период циркуляции микрокапсул в кровеносном русле. А в 1989 г. Е. Tsuchida с помощью новейших методов создал структурные единицы в виде телец овальной формы диаметром в среднем 0,1 мкм. Каждая частица состояла из 500 - 2300 гемов гемоглобина, заключенных в двухслойную фосфолипидную мембрану. Двухслойная мембрана липосом обладала повышенной механической прочностью и стабильностью. Последняя значительно увеличивалась при внедрении особым способом в состав мембран токоферола (витамина Е), являющимся сильным антиоксидантом. Он предохранял мембрану от разрушительного действия оксидантов и удлинял срок сохранения ее структурной целостности. При замещении крови на 80 - 90% все животные выживали. Из этого следует, что по сути дела речь идет о создании аналогов функционирующей клетки.

Казалось бы, что эта упрощенная модель эритроцита, судя по экспериментальным данным, может успешно функционировать в человеческом организме, и пора бы переходить на клинические испытания. Но в этих липосомах гемолипидный комплекс был способен осуществить лишь около 1 тысячи циклов "оксигенация - дезоксигенация". Это означает 6 - 8 часов "работы". Эритроцитарный же гемоглобин функционирует в течение 90 - 120 дней (по другим данным 40 дней) и способен осуществить 400 тысяч циклов.

Кроме этого, автор в своей работе засекретил методику изготовления микротелец, но, учитывая строение микротелец и насколько сложна их конструкция, можно предположить, что методика очень дорогая и трудоемкая, и она не сможет удовлетворить потребности, например при массовом травматизме. К тому же возникает вопрос о механизмах разрушения и дезактивации таких очень сложных структур и продуктов их разрушения. Отмечается также внедрение искусственных липосом в элементы ретикулоэндотелиальной системы клетки и нарушении ее функции [3, 6, 22].

Самой важной проблемой создания "искусственной крови" данного направления остается сохранение гемоглобином нативных свойств в течении длительного промежутка времени. В норме непрерывно происходящее разрушение этой сложной молекулы в эритроците купируется с помощью биологической работы ресинтеза, которая протекает с использованием энергии за счет гидролиза АТФ. Возможность искусственного получения таких мембран была показано еще 20 лет назад. Имеется принципиальная возможность создания таких мембран и для гемоглобинсодержащих липосом, но такая перспектива выглядит довольно отдаленной [6, 12].

Очень перспективным и довольно интересным является другой вариант конструкции кислородпереносящих кровезаменителей на основе гемоглобина является разработка конъюгированного (или модифицированного) гемоглобина. Обычно это соединение гемоглобина с некоторыми органическими молекулами, которые защищают гемоглобин от разного рода внешних воздействий.

В качестве защитного вещества можно использовать полиоксиэтилен. В опыте было показано, что при замещении крови этим раствором у собак до 5 % каких-либо функциональных и органических изменений обнаружено не было. Полупериод жизни препарата составил 36 часов. Но снова возникает вопрос, на который в литературе нет ответа: а каковы механизмы разрушения такой сложной системы. Но и еще полупериод жизни 36 часов предполагает во времени повторную трансфузию, а последствия повторных массивных инфузий неизвестны, а поэтому непредсказуемы [6, 8]. Хотя известно, что в растворе полимеризованных гемоглобинов есть вызывающие токсичность примеси - стромальные липиды, эндотоксины, высокомолекулярные фракции гемоглобина, а через почки выводится лишь только половина гемопротеида, вторая половина из плазмы исчезает, но не появляется в моче, т.е. захватывается организмом. Большую роль в это играет процессы трансгемирования гемоглобина ( переход гема с гемоглобина на человеческий сывороточный альбумин). Поэтому эти препараты с осторожностью назначают при печеночной недостаточности в связи с нарушением белковообразовательной функции печени [15].

Недостаток модифицированного гемоглобина - в более высоком, по сравнению с донорской кровью, сродстве к кислороду, что связано с отсутствием регулятора обратной оксигенации и более низкой кислородной емкости. В последнее время найден метод, который позволяет устранить этот недостаток путем создания модифицированного гемоглобина, способного к обратимой оксигенации. Регулятором в таком случае является имизатглутаралальдегида: в атмосфере азота к глобину присоединяется пиридоксаль-фосфат, в дальнейшем полимеризация полученных комплексов посредством сшивания глутаралальдегидом. В качестве основы для такого полимеризованного гемоглобина можно использовать даже гемоглобин крупного рогатого скота. Но при всех этих преимуществах наблюдаются выраженные иммунные реакции организма на введение такого препарата, полученного из гемоглобина животных. Кроме того, применяется еще и внутримолекулярная сшивка для увеличения времени циркуляции препарата в кровеносном русле, но при этом нужно учитывать доказанную экспериментально малую селективность его, приводящую к образованию производных гемоглобина [3].

Вследствие больших размеров молекулы модифицированного гемоглобина (при его степени полимеризации свыше 25 - 30%) увеличивается СОЭ до 55 - 60мм/ч [1].

В последнее время активизировались исследования бычьего гемоглобина с целью использования его в качестве основы для создания "искусственной крови". Бычий гемоглобин тщательно очищают от примесей путем кристаллизации, полимеризуют и соединяют его с пиридоксаль-фосфатом.

Благодаря слабым антигенным свойствам бычий гемоглобин в принципе может быть использован для конструирования "искусственной крови". Но нельзя не учесть возможность анафилактических реакций, при повторной инфузии их вероятность увеличивается во много раз [6]. Бычий гемоглобин имеет преимущество над человеческим своей высокой доступностью и низкой стоимостью; отсутствием риска заражения реципиента инфекционным гепатитом и СПИДом; кроме этого, в силу своих структурных особенностей имеет низкое сродство к кислороду, близкое к таковому для донорской крови человека. Это позволяет избежать при получении полимера из бычьего гемоглобина по сравнению из гемоглобина человека весьма трудоемкого этапа - присоединения регулятора обратимой оксигенации пиридоксаль-5'- фосфата [16].


Информация о работе «Проблемы создания искусственной крови»
Раздел: Медицина, здоровье
Количество знаков с пробелами: 27398
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
51819
0
0

... , правое легкое и левое ухо. Раненый пес выжил благодаря оксиглобину – заменителю крови, разрешенному для использования только в ветеринарии. В то же время это единственный кровезаменитель на американском рынке. Хотя препараты, подобные оксиглобину, часто называют «заменителями крови» или «искусственной кровью»,более точно называть это «кислородной терапией».В отличие от настоящей крови препараты ...

Скачать
30951
0
3

... 60 мин три температуре 25—26 С), г с на сроки, в 3-4 раза превышающие таковые по данным литературы. Не касаясь вопроса о целесообразности проведения операций на сердце вусловиях искусственной гипотермии при наличии метода ИК отметим, что с позиций патофизиологии и анестезиологии разработанный метод имеет первостепенное научное значение и, безусловно, относится к разряду существенных достижений при ...

Скачать
32107
0
1

... анестезиолог вводит в оксигенатор препараты, необходимые для поддержания анестезии и миорелаксации (см. главу 23). Начало и поддержание ИК Переход с естественного кровообращения на искусственное осуществляется в два этапа. Первый — параллельное кровообращение — требует от перфузиолога большого искусства. Основная задача заключается в поддержании адекватного кровоснабжения головного мозга и ...

Скачать
174374
9
0

... % Абрикосы – 305мг% Источники железа: Черника – 7,0мг% Груша – 3,2мг% Айва – 3,0мг% Хурма – 2,5мг% Яблоки – 2,2мг% Лекция 10. «Урбанизация и возникающие при этом гигиенические и экологические проблемы» НТР во второй половине XX века ознаменовалась появлением урбанизации. Это процесс концентрации в городах промышленности, науки, культуры, миграция населения из сел в города, рост числа ...

0 комментариев


Наверх