Газовая защита

133694
знака
40
таблиц
143
изображения

4.2.6. Газовая защита

В качестве газовой защиты используется реле типа РГЧЗ-66. Газовое реле содержит два элемента - сигнальный и отключающий. Сигнальный элемент срабатывает при повреждениях, сопровождающихся слабым газообразованием после накопления определенного объема газа в реле. При значительном повреждении, вызывающем бурное выделение газа, повышается давление внутри бака и создается переток масла в сторону расширителя, воздействующий на отключающий элемент. Последний срабатывает при превышении заданной скорости потока масла. При этом газ из бака трансформатора попадает в газовое реле и вызывает срабатывание сигнального элемента позже действия отключающего элемента.

Устройство реле РГЧЗ-66 представлено на рисунке 4.5.


Рис. 4.5. Устройство реле РГЧЗ-66.

1,2 – чашечки сигнального и отключающего элементов; 3 – пружина; 4 – контакт чашечки сигнального элемента; 5 – подвижной контакт отключающего элемента; 6 – пластина; 7,8 – экраны; 9 – смотровое окно с делениями; 10 – кран для отбора проб газа и выпуска его из реле.


4.2.7. Защита от симметричных перегрузок

Для защиты генераторов от симметричных нагрузок применяется блок защиты БЭ1103. БЭ1103 включается в одну из фаз вторичных цепей трансформаторов тока нулевых или фазных выводов генератора. Характеристика интегрального органа БЭ1103 соответствует перегрузочным характеристикам обмотки статора генератора.

Структурная схема блока защиты представлена на рисунке 4.6.

Рис. 4.6. Структурная схема БЭ1103

ВП – входной преобразователь тока; СО – сигнальный орган, срабатывающий с фиксированной выдержкой времени при увеличении относительного тока статора выше значения уставки срабатывания органа; ПО – пусковой орган, срабатывающий без выдержки времени при увеличении относительного тока статора выше значения уставки срабатывания органа и осуществляющий пуск интегрального органа; ИО – интегральный орган, срабатывающий от тока статора с выдержкой времени tср; БК – блок контроля, осуществляющий функциональный и тестовый контроль блока защиты.

Органы Iсигн и Iпуск блока защиты имеют уставки срабатывания по относительному току статора, определяемому по формуле:

,

и регулируемые дискретно в диапазоне 11,35 с минимальной ступенью регулирования не более 0,06. Коэффициент возврата органов Iсигн и Iпуск не ниже 0,98. Уставка выдержки времени Iсигн регулируется дискретно в диапазоне сек с минимальной ступенью регулирования не более 0,25 сек.

Интегральный орган блока защиты имеет плавную регулировку коэффициента В в диапазоне от 0,8 до 1,0 и плавно ступенчатую регулировку коэффициента С в диапазоне от 3 до 50. Поставляется блок с настройкой значений коэффициентов В=0,91 и С=19,2 .

Выдержка времени интегрального органа определяется как:

.

Интегральный орган БЭ1103 имитирует процесс охлаждения генератора после устранения перегрузки по экспоненциальному закону. При этом промежуток времени, за который перегрев обмотки статора снижается от максимально допустимой величины до 0,135 от этой величины, условно называется временем « полного охлаждения» и равняется (60090) с.


4.2.8. Защита от несимметричных перегрузок генератора с интегрально – зависимой характеристикой времени

Защита предназначена для предотвращения повреждения генератора при перегрузке токами обратной последовательности, вызванных несимметричной нагрузкой в нормальном режиме, либо ненормальными режимами работы системы (обрывы фаз, недоотключение одной – двух фаз выключателя и т.п.), либо при внешнем к.з.

Защита выполняется с помощью интегрального и сигнального органов блок-реле БЭ1101. Структурная схема приведена на рисунке 4.7.

Рис. 4.7. Структурная схема БЭ1101

ВП – входной преобразователь тока; СО – сигнальный орган; ПО – пусковой орган; ИО – интегральный орган; ОТО – орган токовой отсечки; БК – блок контроля.

Входной преобразователь, выделяет из входного тока составляющие обратной последовательности I2. Основной узел входного преобразователя – фильтр токов обратной последовательности.

Сигнальный орган, срабатывает с фиксированной выдержкой времени при увеличении тока I2* выше значения, определяемого уставкой, и при увеличении тока I2* сверх длительно допустимого.

Пусковой орган, срабатывает без выдержки времени при увеличении тока I2* выше длительно допустимой его величины, определяемой уставкой, и осуществляющий пуск интегрального органа.

Ток I2* определяется как:

,

где: I2 – ток обратной последовательности в первичной цепи генератора.

Интегральный орган, срабатывает с выдержкой времени, определяемой выражением:

,

где: А – постоянная генератора, численно равная допустимой длительности несимметричного режима для данного типа генератора при I2*=1 в секциях.

Интегральный орган учитывает накопление тепла в обмотке ротора в процессе перегрузки и охлаждение ротора после устранения перегрузки. Орган реализует зависимую выдержку времени на срабатывание от значения тока обратной последовательности и выполняет функции ближнего и дальнего резервирования.

Интегральный орган воздействует на отключение блока от сети, в которой находится причина недопустимой перегрузки генератора токами обратной последовательности. При этом собственные нужды продолжают питаться от генератора.

Орган токовой отсечки, срабатывает с фиксированной выдержкой времени при увеличении тока I2* выше величины, определяемой уставкой. ОТО осуществляет функции резервирования защит, смежных с генератором элементов.

Блок защиты БЭ1101 включается во вторичные цепи фаз А, В и С трансформаторов тока, установленных со стороны нейтрали или фазных выводов генератора. Величины допустимых токов I2* для разных генераторов приводятся в заводской документации и в ПУЭ.


5. Технико-экономические показатели станции 5.1. Полезный отпуск тепловой энергии:

5.1.1. Годовой отпуск пара из производственных отборов турбин:

Дпг=nтДпочhотбп;

где:

nт – число турбин;

Дпоч – часовая максимальная нагрузка из производственных отборов;

hотбп – число часов использования максимальной нагрузки, потребляемой из производственных отборов турбин (ориентировочно принимается 4000-6000 ч).

Дпг=31406000=2520000 т/год.


5.1.2. Годовой отпуск теплоты с коллекторов ТЭЦ для производственных целей:

Qпгпгi=2,6Дпг;

где:

i=2,6 – разность энтальпии пара в производственном отборе и энтальпии возвращаемого конденсата ГДж/т;

Qпг=2,62520000= = Гкалл/год;

где: 4,187 – переводный коэффициент.


5.1.3. Годовой отпуск теплоты из отопительных отборов турбин:

Qотопг=nQотопчhотботоп ;

где:

hотботоп – число часов использования максимума отопительного отбора в зависимости от климатического района;

Qотопч – суммарный отпуск теплоты в отопительные отборы всех турбин;

Qотопг=32204500=2970000 ГДж/год = Гкалл/год.

5.1.4. Годовой отпуск теплоты с коллекторов ТЭЦ:

Qотпг=Qпг+Qотопг;

Qотпг=6552000+2970000=9522000 ГДж/год=2274181,99 Гкалл/год.

5.2. Выработка и отпуск электрической энергии

5.2.1. Годовая выработка электрической энергии:

Wв=Nh;

N – установленная расчётная мощность турбины;

h – число часов использования установленной расчётной мощности;

Wв=3607200=1296000 МВтч;


5.2.2. Расход электроэнергии на СН:

Wсн=;

где:

kсн – удельный расход электроэнергии на СН, при начальном давлении пара перед турбиной Р0=12,7 МПа (130 кгс/см2), %;

Wсн== МВтч.


5.2.3. Годовой расход электрической энергии, отнесённый на отпуск теплоты:

Wснт== МВтч;

где: W’снт = 6 кВтч/ГДж – удельный расход электроэнергии собственных нужд на отпуск единицы теплоты, при работе на твёрдом топливе.


5.2.4. Годовой расход электрической энергии, отнесённый на отпуск электрической энергии:

Wснэ=Wсн – Wснт;

Wснэ=129600-57132=72468 МВтч

4.2.5. Годовой отпуск электрической энергии с шин станции:

Wотп=Wв-Wсн;

Wотп=1296000-129600=1166400 МВтч.

5.3. Годовой расход условного топлива котлами:

BуктнудQотпгэнудWвут’+Вуэ’;

где:

втнуд, вэнуд – нормативные коэффициенты;

Bук=1302274181,99+0,321296000103=295643658,7+414720000= =710363658,7 кг.у.т/год. =710363,66 т.у.т./год


5.4. Коэффициент использования топлива

топл== %.

где:

29,3 – удельная теплота сгорания условного топлива ГДж/т;

3,6 – переводный эквивалент электрической энергии в теплоту ГДж/МВтч.


5.5. Определение себестоимости энергии ТЭЦ

5.5.1. Расходы на топливо:

ИтоплтоплВу=230710363,66=163383641,8 руб/год,

где:

Цтопл – цена топлива;


5.5.2. Амортизационные отчисления:

Иа=nаКуд,

где:

nа=0,04 - норма амортизации,

Куд – удельные капиталовложения (230 руб/кВт  15),

Иа=0,0418000023015=24,84106 руб/год.


5.5.3. Расходы на зарплату:

Иоснз/пл=nэксNустФ,

где:

nэкс=260 чел – численность эксплуатационного персонала,

Ф – фонд заработной платы, руб/челгод,

Иоснз/пл=260500012=106 руб/год;


5.5.4. Дополнительная зарплата:

Идопз/пл=0,1Иоснз/пл=0,115,6106=1,56106 руб/год;


5.5.5. Отчисления на социальное страхование:

Исоцз/пл=0,356 (Иоснз/плдопз/пл)=0,356 (15,6+1,56) 106=6,11106 руб/год;


5.5.6. Суммарные издержки на зарплату:

Из/пл= Иоснз/плдопз/плсоцз/пл =(15,6+1,56+6,11) 106 = 23,27106 руб/год,


5.5.7. Расходы по содержанию и эксплуатации оборудования:

Ир=1,15Иа=1,1524,84106=28,57106 руб/год.


5.5.8. Цеховые расходы:

Ицех=0,11Ир=0,1128,57106=3,14106 руб/год.


5.5.9. Общестанционные расходы:

Иос=Фnаупkрзп+(Ирцех)=50000,072601,15+0,1(28,57+3,14) 106=

=3275650 руб/год;

где: nауп – численность административно-управленческого персонала, укрупнённо принимается в размере 6-7% от численности эксплуатационного персонала.


5.5.10. Общие издержки производства:

И=Итоплаз/плрцехос=163,38+24,84+23,27+28,57+3,14+3,28= =246,48106 руб/год.

Таблица 4.1

Сводная таблица издержек

Составляющие издержек

индекс

Размерность Величина Часть, %
на топливо

Итопл

млн. руб 163,38
на амортизацию

Иа

24,84
на заработную плату

Изп

23,27
на содержание и эксплуатацию

Ир

28,57
цеховые

Ицех

3,14
общестанционные

Иос

3,28
суммарные издержки И 246,48 100

5.5.11. Коэффициент распределения затрат на теплоту:

Крт==.


5.5.12. Коэффициент распределения затрат на электрическую энергию:

Крэ=1 – Крт=1 – 0,42=0,58.


5.5.13. Годовые издержки, отнесённые на отпуск теплоты:

Ит= Крт И=0,42246,48106=103,52106 руб/год.


5.5.14. Годовые издержки, отнесённые на отпуск электроэнергии:

Иэ= И – Ит=(246,48 – 103,52) Ч106=142,96Ч106 руб/год.

5.5.15. Себестоимость единицы теплоты:

Sотпт== руб/Гкал.


5.5.16. Себестоимость отпущенной электроэнергии:

Sотпэ== руб/кВт Чч

Таблица 4.2

Сводная таблица технико-экономических показателей ТЭЦ

№ п/п Наименование величин Условное обозначение Единица измерения Величина
1

Установленная мощность:

номинальная

Nун

МВт 180
2 Число часов использования установленной мощности

hу

ч 7200
3 Максимальная часовая нагрузка:


Из производственных отборов

Дпоч

Т/ч 140
Из отопительных отборов

Дотопч

100
4 Число часов использования максимальной производственной нагрузки

hотбп

ч 6000
5 Число часов использования максимума отопительных отборов

hотботоп

ч 4500
6 Удельные расходы условного топлива:


На отпуск электрической энергии

вотпэ

г.у.т./кВтч

320
На отпуск теплоты

вотпт

кг.у.т./Гкалл 130
7 Удельные капиталовложения

Куд

руб/кВт

23015

8 Удельная численность:


эксплуатационного персонала

nэкс

чел 260
административно-управленческого персонала

nауп

чел 18
9 Цена условного топлива

Цтопл

р/т.у.т. 230
10 Себестоимость единицы


Электрической энергии

Sотпэ

коп/кВтч

12,26
Теплоты

Sотпт

руб/Гкал 45,52


Информация о работе «Проектирование электрической части ТЭЦ 180 МВт»
Раздел: Технология
Количество знаков с пробелами: 133694
Количество таблиц: 40
Количество изображений: 143

Похожие работы

Скачать
19569
14
10

... по напряжению:  Uуст= UР - по току: Imax < Iуст 2,8868< 4,125 - по роду установки: внутренней. Выбираем реактор типа РБДГ-10-4000-0,18 9 ВЫБОР АППАРАТОВ И ТОКОВЕДУЩИХ ЧАСТЕЙ ДЛЯ ЗАДАННЫХ ЦЕПЕЙ   9.1 Выбор сборных шин и ошиновки на стороне 220 кВ.   - Провести выбор сечения сборных шин по допустимому току при максимальной нагрузки на шинах. - Выбираем провод АС 240/32 ...

Скачать
41685
17
5

... условию послеаварийного режима, если ток меньше или равен  А.  А. Условие выполняется, усиления линии не требуется 4. Выбор принципиальной схемы подстанции Выбор главной схемы является определяющим при проектировании электрической части подстанций, так как он определяет состав элементов и связей между ними. Главная схема электрических соединений подстанций зависит от следующих факторов ...

Скачать
59085
7
1

... кранов. Электрические схемы бывают принципиальные или элементные, монтажные или маркировочные. Принципиальные схемы отображают взаимодействие элементов электрооборудования, указывают последовательность прохождения тока по силовым цепям и аппаратам управления. Пользоваться принципиальными схемами удобно при ремонте и наладке. Аппаратура в них просто и чётко разбита и отдельные самостоятельные ...

Скачать
45048
21
7

... = 1,45 = 33,1/16=2,07 В этой главе было составлено четыре варианта схем сети, из которых выбрали два наиболее рациональных, исходя из требований надежности к электрической сети. Для выбранных вариантов выбрали напряжения каждой линии, сечение проводов, трансформаторы. 5. ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ НАИБОЛЕЕ РАЦИОНАЛЬНОГО ВАРИАНТА   Для выбора лучшего варианта схемы сети из двух, для ...

0 комментариев


Наверх