2. Задание на курсовой проект
Вариант №7
| Qmax м3/ч | Qmin м3/ч | Среда | Рн Мпа | Рк МПа | Но м | T oC | Дт мм | Lт м | Колич. вентилей | Колич поворотов | Ход/Дс | Тип плунжера | |||||||||||||
120 | 12 | Вода | 2,1 | 0,13 | +16 | 50 | 150 | 180 | 8 | 13 | 1 | пустотелый |
| |||||||||||||
3. расчёт регулирующих клапанов
1. Определение числа Рейнольдса
, где - скорость потока при максимальном расходе
r=988.07 кг/м3 (для воды при 50 оС) [табл. 2]
m=551*10-6 Па*с [табл. 3]
Re> 10000, следовательно, режим течения турбулентный.
2. Определение потери давления в трубопроводной сети при максимальной скорости потока
, где , xМвент=4.4, xМколен=1.05 [табл. 4]
3. Определение перепада давлений на регулирующем клапане при максимальной скорости потока
4. Определение расчётного значения условной пропускной способности регулирующего клапана:
, где h=1.25 - коэффициент запаса
5. Выбор регулирующего клапана с ближайшей большей пропускной способностью KVy (по KVз и Ду):
выбираем двухседельный чугунный регулирующий клапан 25 ч30нжМ
условное давление 1,6 Мпа
условный проход 50 мм
условная пропускная способность 40 м3/ч
пропускная характеристика линейная, равнопроцентная
вид действия НО
материал серый чугун
температура регулируемой среды от –15 до +300
6. Определение пропускной способности трубопроводной сети
7. Определение гидравлического модуля системы
<1.5, следовательно выбираем регулирующий клапан с линейной пропускной характеристикой (ds=a*dh)
Коэффициент, показывающий степень уменьшения площади проходного сечения седла клапана относительно площади проходного сечения фланцев К=0,6 [табл. 1]
4. профилирование плунжера регулирующего клапана
Требуемая пропускная характеристика регулирующего клапана обеспечивается изготовлением специальной формы поверхности окон. Оптимальный профиль плунжера получается в результате расчёта гидравлического сопротивления дроссельной пары (плунжер – седло) как функции относительного открытия регулирующего клапана.
... где - плотность топлива; - относительная толщина оболочки для алюминиевых сплавов. Масса бака горючего: . Масса бака окислителя: . 4. Составление компоновочной схемы ступени Рис.6. Компоновочная схема первой ступени ракеты (М 1:50) 5. Выбор и обоснование схемы системы наддува Системы наддува служат для обеспечения и поддержания требуемого давления в топливных баках. ...
... ЭНЕРГЕТИЧЕСКИЙ КОЛЛЕДЖ ЗАДАНИЕ На курсовой проект по дисциплине «Турбинные установки тепловых электростанций». Студенту _ Харламову Андрею Группы _ 3-ТЭС-1 Тема: Тепловой расчёт турбины ПТ-25-90/11 ИСХОДНЫЕ ДАННЫЕ 1.1 Номинальная мощность турбины _ 25000 кВт 1.2 Начальные параметры пара: давление _ 90 атм, температура _ 545 °С 1.3 Давление отработавшего ...
... кг/с Gсет*(t1-t3)/ (i2/4,19-tкб)* 0,98 7,14 9,13 2,93 0,48 Р16 Количество конденсата от подогревателей сетевой воды Gб кг/с Дб 7,14 9,13 2,93 0,43 Р17 Паровая нагрузка на котельную за вычетом расхода пара на деаэрацию и на подогрев сырой воды, умягчаемой для питания ...
... теплопередачу. В крупных установках используют паротурбонасосы, конденсат их выходного пара маслом не загрязнён, поэтому его можно направлять в котёл. Инжекторы для питания котлов в отопительно-производственных котельных непригодны, так как они плохо засасывают горячую воду. Производительность насосов определяется по формуле, т/ч: z – число котлов, шт, k – коэффициент ...
0 комментариев