2.3 Методология проектирования информационной системы
Жизненный цикл по ИС. Одним из базовых понятий методологии проектирования информационных систем (ИС) является понятие жизненного цикла ее программного обеспечения (ЖЦ ПО). ЖЦ ПО - это непрерывный процесс, который начинается с момента принятия решения о необходимости его создания и заканчивается в момент его полного изъятия из эксплуатации. Основным нормативным документом, регламентирующим ЖЦ ПО, является международный стандарт ISO/IEC 12207 (ISO - International Organization of Standardization - Международная организация по стандартизации, IEC - International Electrotechnical Commission - Международная комиссия по электротехнике). Он определяет структуру ЖЦ, содержащую процессы, действия и задачи, которые должны быть выполнены во время создания ПО. Структура ЖЦ ПО по стандарту ISO/IEC 12207 базируется на трех группах процессов:
- основные процессы ЖЦ ПО (приобретение, поставка, разработка, эксплуатация, сопровождение);
- вспомогательные процессы, обеспечивающие выполнение основных процессов (документирование, управление конфигурацией, обеспечение качества, верификация, аттестация, оценка, аудит, решение проблем);
- организационные процессы (управление проектами, создание инфраструктуры проекта, определение, оценка и улучшение самого ЖЦ, обучение).
Разработка включает в себя все работы по созданию ПО и его компонент в соответствии с заданными требованиями, включая оформление проектной и эксплуатационной документации, подготовку материалов, необходимых для проверки работоспособности и соответствующего качества программных продуктов, материалов, необходимых для организации обучения персонала и т.д. Разработка ПО включает в себя, как правило, анализ, проектирование и реализацию (программирование).
Эксплуатация включает в себя работы по внедрению компонентов ПО в эксплуатацию, в том числе конфигурирование базы данных и рабочих мест пользователей, обеспечение эксплуатационной документацией, проведение обучения персонала и т.д., и непосредственно эксплуатацию, в том числе локализацию проблем и устранение причин их возникновения, модификацию ПО в рамках установленного регламента, подготовку предложений по совершенствованию, развитию и модернизации системы.
Управление проектом связано с вопросами планирования и организации работ, создания коллективов разработчиков и контроля за сроками и качеством выполняемых работ. Техническое и организационное обеспечение проекта включает выбор методов и инструментальных средств для реализации проекта, определение методов описания промежуточных состояний разработки, разработку методов и средств испытаний ПО, обучение персонала и т.п. Обеспечение качества проекта связано с проблемами верификации, проверки и тестирования ПО. Верификация - это процесс определения того, отвечает ли текущее состояние разработки, достигнутое на данном этапе, требованиям этого этапа. Проверка позволяет оценить соответствие параметров разработки с исходными требованиями. Проверка частично совпадает с тестированием, которое связано с идентификацией различий между действительными и ожидаемыми результатами и оценкой соответствия характеристик ПО исходным требованиям. В процессе реализации проекта важное место занимают вопросы идентификации, описания и контроля конфигурации отдельных компонентов и всей системы в целом.
Управление конфигурацией является одним из вспомогательных процессов, поддерживающих основные процессы жизненного цикла ПО, прежде всего процессы разработки и сопровождения ПО. При создании проектов сложных ИС, состоящих из многих компонентов, каждый из которых может иметь разновидности или версии, возникает проблема учета их связей и функций, создания унифицированной структуры и обеспечения развития всей системы. Управление конфигурацией позволяет организовать, систематически учитывать и контролировать внесение изменений в ПО на всех стадиях ЖЦ. Общие принципы и рекомендации конфигурационного учета, планирования и управления конфигурациями ПО отражены в проекте стандарта ISO 12207-2.
Каждый процесс характеризуется определенными задачами и методами их решения, исходными данными, полученными на предыдущем этапе, и результатами. Результатами анализа, в частности, являются функциональные модели, информационные модели и соответствующие им диаграммы. ЖЦ ПО носит итерационный характер: результаты очередного этапа часто вызывают изменения в проектных решениях, выработанных на более ранних этапах.
Модели жизненного цикла ПО. Стандарт ISO/IEC 12207 не предлагает конкретную модель ЖЦ и методы разработки ПО (под моделью ЖЦ понимается структура, определяющая последовательность выполнения и взаимосвязи процессов, действий и задач, выполняемых на протяжении ЖЦ. Модель ЖЦ зависит от специфики ИС и специфики условий, в которых последняя создается и функционирует). Его регламенты являются общими для любых моделей ЖЦ, методологий и технологий разработки. Стандарт ISO/IEC 12207 описывает структуру процессов ЖЦ ПО, но не конкретизирует в деталях, как реализовать или выполнить действия и задачи, включенные в эти процессы.
К настоящему времени наибольшее распространение получили следующие две основные модели ЖЦ:
- каскадная модель (70-85 г.г.);
- спиральная модель (86-90 г.г.).
В изначально существовавших однородных ИС каждое приложение представляло собой единое целое. Для разработки такого типа приложений применялся каскадный способ. Его основной характеристикой является разбиение всей разработки на этапы, причем переход с одного этапа на следующий происходит только после того, как будет полностью завершена работа на текущем (рисунок 5). Каждый этап завершается выпуском полного комплекта документации, достаточной для того, чтобы разработка могла быть продолжена другой командой разработчиков.
Положительные стороны применения каскадного подхода заключаются в следующем:
- на каждом этапе формируется законченный набор проектной документации, отвечающий критериям полноты и согласованности;
- выполняемые в логичной последовательности этапы работ позволяют планировать сроки завершения всех работ и соответствующие затраты.
Рисунок 5 -
Рисунок 6 - Реальный процесс разработки ПО по каскадной схеме
Основным недостатком каскадного подхода является существенное запаздывание с получением результатов. Согласование результатов с пользователями производится только в точках, планируемых после завершения каждого этапа работ, требования к ИС "заморожены" в виде технического задания на все время ее создания. Таким образом, пользователи могут внести свои замечания только после того, как работа над системой будет полностью завершена. В случае неточного изложения требований или их изменения в течение длительного периода создания ПО, пользователи получают систему, не удовлетворяющую их потребностям. Модели (как функциональные, так и информационные) автоматизируемого объекта могут устареть одновременно с их утверждением.
Для преодоления перечисленных проблем была предложена спиральная модель ЖЦ (рисунок 7 , делающая упор на начальные этапы ЖЦ: анализ и проектирование. На этих этапах реализуемость технических решений проверяется путем создания прототипов. Каждый виток спирали соответствует созданию фрагмента или версии ПО, на нем уточняются цели и характеристики проекта, определяется его качество и планируются работы следующего витка спирали. Таким образом углубляются и последовательно конкретизируются детали проекта и в результате выбирается обоснованный вариант, который доводится до реализации.
Разработка итерациями отражает объективно существующий спиральный цикл создания системы. Неполное завершение работ на каждом этапе позволяет переходить на следующий этап, не дожидаясь полного завершения работы на текущем. При итеративном способе разработки недостающую работу можно будет выполнить на следующей итерации. Главная же задача - как можно быстрее показать пользователям системы работоспособный продукт, тем самым активизируя процесс уточнения и дополнения требований.
Основная проблема спирального цикла - определение момента перехода на следующий этап. Для ее решения необходимо ввести временные ограничения на каждый из этапов жизненного цикла. Переход осуществляется в соответствии с планом, даже если не вся запланированная работа закончена. План составляется на основе статистических данных, полученных в предыдущих проектах, и личного опыта разработчиков.
Рисунок 7 - Спиральная модель ЖЦ
Методологии и технологии проектирования ИС. Общие требования к методологии и технологии. Методологии, технологии и инструментальные средства проектирования (CASE-средства) составляют основу проекта любой ИС. Методология реализуется через конкретные технологии и поддерживающие их стандарты, методики и инструментальные средства, которые обеспечивают выполнение процессов ЖЦ.
Технология проектирования определяется как совокупность трех составляющих:
- пошаговой процедуры, определяющей последовательность технологических операций проектирования;
- критериев и правил, используемых для оценки результатов выполнения технологических операций;
- нотаций (графических и текстовых средств), используемых для описания проектируемой системы.
Технологические инструкции, составляющие основное содержание технологии, должны состоять из описания последовательности технологических операций, условий, в зависимости от которых выполняется та или иная операция, и описаний самих операций.
Технология проектирования, разработки и сопровождения ИС должна удовлетворять следующим общим требованям:
- технология должна поддерживать полный ЖЦ ПО;
- технология должна обеспечивать гарантированное достижение целей разработки ИС с заданным качеством и в установленное время;
- технология должна обеспечивать возможность выполнения крупных проектов в виде подсистем (т.е. возможность декомпозиции проекта на составные части, разрабатываемые группами исполнителей ограниченной численности с последующей интеграцией составных частей). Опыт разработки крупных ИС показывает, что для повышения эффективности работ необходимо разбить проект на отдельные слабо связанные по данным и функциям подсистемы. Реализация подсистем должна выполняться отдельными группами специалистов. При этом необходимо обеспечить координацию ведения общего проекта и исключить дублирование результатов работ каждой проектной группы, которое может возникнуть в силу наличия общих данных и функций;
- технология должна обеспечивать возможность ведения работ по проектированию отдельных подсистем небольшими группами (3-7 человек). Это обусловлено принципами управляемости коллектива и повышения производительности за счет минимизации числа внешних связей;
- технология должна обеспечивать минимальное время получения работоспособной ИС. Речь идет не о сроках готовности всей ИС, а о сроках реализации отдельных подсистем. Реализация ИС в целом в короткие сроки может потребовать привлечения большого числа разработчиков, при этом эффект может оказаться ниже, чем при реализации в более короткие сроки отдельных подсистем меньшим числом разработчиков. Практика показывает, что даже при наличии полностью завершенного проекта, внедрение идет последовательно по отдельным подсистемам;
- технология должна предусматривать возможность управления конфигурацией проекта, ведения версий проекта и его составляющих, возможность автоматического выпуска проектной документации и синхронизацию ее версий с версиями проекта;
- технология должна обеспечивать независимость выполняемых проектных решений от средств реализации ИС (систем управления базами данных (СУБД), операционных систем, языков и систем программирования).
Структурный подход к проектированию ИС. Сущность структурного подхода. Сущность структурного подхода к разработке ИС заключается в ее декомпозиции (разбиении) на автоматизируемые функции: система разбивается на функциональные подсистемы, которые в свою очередь делятся на подфункции, подразделяемые на задачи и так далее. Процесс разбиения продолжается вплоть до конкретных процедур. При этом автоматизируемая система сохраняет целостное представление, в котором все составляющие компоненты взаимоувязаны. При разработке системы "снизу-вверх" от отдельных задач ко всей системе целостность теряется, возникают проблемы при информационной стыковке отдельных компонентов.
Все наиболее распространенные методологии структурного подхода базируются на ряде общих принципов. В качестве двух базовых принципов используются следующие:
- принцип "разделяй и властвуй" - принцип решения сложных проблем путем их разбиения на множество меньших независимых задач, легких для понимания и решения;
- принцип иерархического упорядочивания - принцип организации составных частей проблемы в иерархические древовидные структуры с добавлением новых деталей на каждом уровне.
Выделение двух базовых принципов не означает, что остальные принципы являются второстепенными, поскольку игнорирование любого из них может привести к непредсказуемым последствиям (в том числе и к провалу всего проекта). Основными из этих принципов являются следующие:
- принцип абстрагирования - заключается в выделении существенных аспектов системы и отвлечения от несущественных;
- принцип формализации - заключается в необходимости строгого методического подхода к решению проблемы;
- принцип непротиворечивости - заключается в обоснованности и согласованности элементов;
- принцип структурирования данных - заключается в том, что данные должны быть структурированы и иерархически организованы.
В структурном анализе используются в основном две группы средств, иллюстрирующих функции, выполняемые системой и отношения между данными. Каждой группе средств соответствуют определенные виды моделей (диаграмм), наиболее распространенными среди которых являются следующие:
- SADT (Structured Analysis and Design Technique) модели и соответствующие функциональные диаграммы;
- DFD (Data Flow Diagrams) диаграммы потоков;
- ERD (Entity-Relationship Diagrams) диаграммы "сущность-связь".
На стадии проектирования ИС модели расширяются, уточняются и дополняются диаграммами, отражающими структуру программного обеспечения: архитектуру ПО, структурные схемы программ и диаграммы экранных форм.
Перечисленные модели в совокупности дают полное описание ИС независимо от того, является ли она существующей или вновь разрабатываемой. Состав диаграмм в каждом конкретном случае зависит от необходимой полноты описания системы.
Методология функционального моделирования SADT. Методология SADT разработана Дугласом Россом и получила дальнейшее развитие в работе. На ее основе разработана, в частности, известная методология IDEF0 (Icam DEFinition), которая является основной частью программы ICAM (Интеграция компьютерных и промышленных технологий), проводимой по инициативе ВВС США.
Методология SADT представляет собой совокупность методов, правил и процедур, предназначенных для построения функциональной модели объекта какой-либо предметной области. Функциональная модель SADT отображает функциональную структуру объекта, т.е. производимые им действия и связи между этими действиями. Основные элементы этой методологии основываются на следующих концепциях:
- графическое представление блочного моделирования. Графика блоков и дуг SADT-диаграммы отображает функцию в виде блока, а интерфейсы входа/выхода представляются дугами, соответственно входящими в блок и выходящими из него. Взаимодействие блоков друг с другом описываются посредством интерфейсных дуг, выражающих "ограничения", которые в свою очередь определяют, когда и каким образом функции выполняются и управляются;
- строгость и точность. Выполнение правил SADT требует достаточной строгости и точности, не накладывая в то же время чрезмерных ограничений на действия аналитика. Правила SADT включают:
- ограничение количества блоков на каждом уровне декомпозиции (правило 3-6 блоков);
- связность диаграмм (номера блоков);
- уникальность меток и наименований (отсутствие повторяющихся имен);
- синтаксические правила для графики (блоков и дуг);
- разделение входов и управлений (правило определения роли данных).
- отделение организации от функции, т.е. исключение влияния организационной структуры на функциональную модель.
Методология SADT может использоваться для моделирования широкого круга систем и определения требований и функций, а затем для разработки системы, которая удовлетворяет этим требованиям и реализует эти функции. Для уже существующих систем SADT может быть использована для анализа функций, выполняемых системой, а также для указания механизмов, посредством которых они осуществляются.
Состав функциональной модели. Результатом применения методологии SADT является модель, которая состоит из диаграмм, фрагментов текстов и глоссария, имеющих ссылки друг на друга. Диаграммы - главные компоненты модели, все функции ИС и интерфейсы на них представлены как блоки и дуги. Место соединения дуги с блоком определяет тип интерфейса. Управляющая информация входит в блок сверху, в то время как информация, которая подвергается обработке, показана с левой стороны блока, а результаты выхода показаны с правой стороны. Механизм (человек или автоматизированная система), который осуществляет операцию, представляется дугой, входящей в блок снизу (рисунок 8).
Рисунок 8 - Функциональный блок и интерфейсные дуги
На рисунке 9, где приведены четыре диаграммы и их взаимосвязи, показана структура SADT-модели. Каждый компонент модели может быть декомпозирован на другой диаграмме. Каждая диаграмма иллюстрирует "внутреннее строение" блока на родительской диаграмме.
Иерархия диаграмм. Построение SADT-модели начинается с представления всей системы в виде простейшей компоненты - одного блока и дуг, изображающих интерфейсы с функциями вне системы. Поскольку единственный блок представляет всю систему как единое целое, имя, указанное в блоке, является общим. Это верно и для интерфейсных дуг - они также представляют полный набор внешних интерфейсов системы в целом.
Рисунок 9 - Структура SADT-модели. Декомпозиция диаграмм
Затем блок, который представляет систему в качестве единого модуля, детализируется на другой диаграмме с помощью нескольких блоков, соединенных интерфейсными дугами. Эти блоки представляют основные подфункции исходной функции. Данная декомпозиция выявляет полный набор подфункций, каждая из которых представлена как блок, границы которого определены интерфейсными дугами. Каждая из этих подфункций может быть декомпозирована подобным образом для более детального представления.
Во всех случаях каждая подфункция может содержать только те элементы, которые входят в исходную функцию. Кроме того, модель не может опустить какие-либо элементы, т.е., как уже отмечалось, родительский блок и его интерфейсы обеспечивают контекст. К нему нельзя ничего добавить, и из него не может быть ничего удалено.
Модель SADT представляет собой серию диаграмм с сопроводительной документацией, разбивающих сложный объект на составные части, которые представлены в виде блоков. Детали каждого из основных блоков показаны в виде блоков на других диаграммах. Каждая детальная диаграмма является декомпозицией блока из более общей диаграммы. На каждом шаге декомпозиции более общая диаграмма называется родительской для более детальной диаграммы.
Дуги, входящие в блок и выходящие из него на диаграмме верхнего уровня, являются точно теми же самыми, что и дуги, входящие в диаграмму нижнего уровня и выходящие из нее, потому что блок и диаграмма представляют одну и ту же часть системы.
На SADT-диаграммах не указаны явно ни последовательность, ни время. Обратные связи, итерации, продолжающиеся процессы и перекрывающиеся (по времени) функции могут быть изображены с помощью дуг. Обратные связи могут выступать в виде комментариев, замечаний, исправлений.
Как было отмечено, механизмы (дуги с нижней стороны) показывают средства, с помощью которых осуществляется выполнение функций. Механизм может быть человеком, компьютером или любым другим устройством, которое помогает выполнять данную функцию (рисунок 10).
Рисунок 10 - Пример механизма
Каждый блок на диаграмме имеет свой номер. Блок любой диаграммы может быть далее описан диаграммой нижнего уровня, которая, в свою очередь, может быть далее детализирована с помощью необходимого числа диаграмм. Таким образом, формируется иерархия диаграмм.
Рисунок 11 - Иерархия диаграмм
Типы связей между функциями. Одним из важных моментов при проектировании ИС с помощью методологии SADT является точная согласованность типов связей между функциями. Различают по крайней мере семь типов:
- (0) Тип случайной связности: наименее желательный. Случайная связность возникает, когда конкретная связь между функциями мала или полностью отсутствует. Это относится к ситуации, когда имена данных на SADT-дугах в одной диаграмме имеют малую связь друг с другом.
- (1) Тип логической связности. Логическое связывание происходит тогда, когда данные и функции собираются вместе вследствие того, что они попадают в общий класс или набор элементов, но необходимых функциональных отношений между ними не обнаруживается.
- (2) Тип временной связности. Связанные по времени элементы возникают вследствие того, что они представляют функции, связанные во времени, когда данные используются одновременно или функции включаются параллельно, а не последовательно.
- (3) Тип процедурной связности. Процедурно-связанные элементы появляются сгруппированными вместе вследствие того, что они выполняются в течение одной и той же части цикла или процесса.
- (4) Тип коммуникационной связности. Диаграммы демонстрируют коммуникационные связи, когда блоки группируются вследствие того, что они используют одни и те же входные данные и/или производят одни и те же выходные данные (рисунок 12).
- (5) Тип последовательной связности. На диаграммах, имеющих последовательные связи, выход одной функции служит входными данными для следующей функции. Связь между элементами на диаграмме является более тесной, чем на рассмотренных выше уровнях связок, поскольку моделируются причинно-следственные зависимости (рисунок 13).
-
Рисунок 12 - Коммуникационная связность
Рисунок 13 - Последовательная связность
В математических терминах необходимое условие для простейшего типа функциональной связности, показанной на рисунке 14, имеет следующий вид:
C = g(B) = g(f(A)) (1)
Рисунок 14 - Функциональная связность
Моделирование потоков данных (процессов). В основе данной методологии (методологии Gane/Sarson) лежит построение модели анализируемой ИС - проектируемой или реально существующей. В соответствии с методологией модель системы определяется как иерархия диаграмм потоков данных (ДПД или DFD), описывающих асинхронный процесс преобразования информации от ее ввода в систему до выдачи пользователю. Диаграммы верхних уровней иерархии (контекстные диаграммы) определяют основные процессы или подсистемы ИС с внешними входами и выходами. Они детализируются при помощи диаграмм нижнего уровня. Такая декомпозиция продолжается, создавая многоуровневую иерархию диаграмм, до тех пор, пока не будет достигнут такой уровень декомпозиции, на котором процесс становятся элементарными и детализировать их далее невозможно.
Источники информации (внешние сущности) порождают информационные потоки (потоки данных), переносящие информацию к подсистемам или процессам. Те в свою очередь преобразуют информацию и порождают новые потоки, которые переносят информацию к другим процессам или подсистемам, накопителям данных или внешним сущностям - потребителям информации. Таким образом, основными компонентами диаграмм потоков данных являются:
- внешние сущности;
- системы/подсистемы;
- процессы;
- накопители данных;
- потоки данных.
Внешние сущности. Внешняя сущность представляет собой материальный предмет или физическое лицо, представляющее собой источник или приемник информации, например, заказчики, персонал, поставщики, клиенты, склад. Определение некоторого объекта или системы в качестве внешней сущности указывает на то, что она находится за пределами границ анализируемой ИС. В процессе анализа некоторые внешние сущности могут быть перенесены внутрь диаграммы анализируемой ИС, если это необходимо, или, наоборот, часть процессов ИС может быть вынесена за пределы диаграммы и представлена как внешняя сущность. Внешняя сущность обозначается квадратом (рисунок 15), расположенным как бы "над" диаграммой и бросающим на нее тень, для того, чтобы можно было выделить этот символ среди других обозначений:
Рисунок 15 - Внешняя сущность
Системы и подсистемы. При построении модели сложной ИС она может быть представлена в самом общем виде на так называемой контекстной диаграмме в виде одной системы как единого целого, либо может быть декомпозирована на ряд подсистем.
Подсистема (или система) на контекстной диаграмме изображается следующим образом (рисунок 16).
Рисунок 16 - Подсистема
Номер подсистемы служит для ее идентификации. В поле имени вводится наименование подсистемы в виде предложения с подлежащим и соответствующими определениями и дополнениями.
Процессы. Процесс представляет собой преобразование входных потоков данных в выходные в соответствии с определенным алгоритмом. Физически процесс может быть реализован различными способами: это может быть подразделение организации (отдел), выполняющее обработку входных документов и выпуск отчетов, программа, аппаратно реализованное логическое устройство и т.д.
Процесс на диаграмме потоков данных изображается, как показано на рисунке 17.
Рисунок 17 - Процесс
Номер процесса служит для его идентификации. В поле имени вводится наименование процесса в виде предложения с активным недвусмысленным глаголом в неопределенной форме (вычислить, рассчитать, проверить, определить, создать, получить), за которым следуют существительные в винительном падеже, например:
- "Ввести сведения о клиентах";
- "Выдать информацию о текущих расходах";
- "Проверить кредитоспособность клиента".
Использование таких глаголов, как "обработать", "модернизировать" или "отредактировать" означает, как правило, недостаточно глубокое понимание данного процесса и требует дальнейшего анализа.
Информация в поле физической реализации показывает, какое подразделение организации, программа или аппаратное устройство выполняет данный процесс.
Накопители данных. Накопитель данных представляет собой абстрактное устройство для хранения информации, которую можно в любой момент поместить в накопитель и через некоторое время извлечь, причем способы помещения и извлечения могут быть любыми. Накопитель данных может быть реализован физически в виде микрофиши, ящика в картотеке, таблицы в оперативной памяти, файла на магнитном носителе и т.д. Накопитель данных на диаграмме потоков данных изображается, как показано на рисунке 18.
Рисунок 18 - Накопитель данных
Накопитель данных идентифицируется буквой "D" и произвольным числом. Имя накопителя выбирается из соображения наибольшей информативности для проектировщика.
Накопитель данных в общем случае является прообразом будущей базы данных и описание хранящихся в нем данных должно быть увязано с информационной моделью.
Поток данных определяет информацию, передаваемую через некоторое соединение от источника к приемнику. Реальный поток данных может быть информацией, передаваемой по кабелю между двумя устройствами, пересылаемыми по почте письмами, магнитными лентами или дискетами, переносимыми с одного компьютера на другой и т.д.
Поток данных на диаграмме изображается линией, оканчивающейся стрелкой, которая показывает направление потока (рисунок 19). Каждый поток данных имеет имя, отражающее его содержание.
Рисунок 19 - Поток данных
Построение иерархии диаграмм потоков данных. Первым шагом при построении иерархии ДПД является построение контекстных диаграмм. Обычно при проектировании относительно простых ИС строится единственная контекстная диаграмма со звездообразной топологией, в центре которой находится так называемый главный процесс, соединенный с приемниками и источниками информации, посредством которых с системой взаимодействуют пользователи и другие внешние системы.
Если же для сложной системы ограничиться единственной контекстной диаграммой, то она будет содержать слишком большое количество источников и приемников информации, которые трудно расположить на листе бумаги нормального формата, и кроме того, единственный главный процесс не раскрывает структуры распределенной системы. Признаками сложности (в смысле контекста) могут быть:
- наличие большого количества внешних сущностей (десять и более);
- распределенная природа системы;
- многофункциональность системы с уже сложившейся или выявленной группировкой функций в отдельные подсистемы.
Для сложных ИС строится иерархия контекстных диаграмм. При этом контекстная диаграмма верхнего уровня содержит не единственный главный процесс, а набор подсистем, соединенных потоками данных. Контекстные диаграммы следующего уровня детализируют контекст и структуру подсистем.
Иерархия контекстных диаграмм определяет взаимодействие основных функциональных подсистем проектируемой ИС как между собой, так и с внешними входными и выходными потоками данных и внешними объектами (источниками и приемниками информации), с которыми взаимодействует ИС.
Разработка контекстных диаграмм решает проблему строгого определения функциональной структуры ИС на самой ранней стадии ее проектирования, что особенно важно для сложных многофункциональных систем, в разработке которых участвуют разные организации и коллективы разработчиков.
После построения контекстных диаграмм полученную модель следует проверить на полноту исходных данных об объектах системы и изолированность объектов (отсутствие информационных связей с другими объектами).
Для каждой подсистемы, присутствующей на контекстных диаграммах, выполняется ее детализация при помощи ДПД. Каждый процесс на ДПД, в свою очередь, может быть детализирован при помощи ДПД или миниспецификации. При детализации должны выполняться следующие правила:
- правило балансировки - означает, что при детализации подсистемы или процесса детализирующая диаграмма в качестве внешних источников/приемников данных может иметь только те компоненты (подсистемы, процессы, внешние сущности, накопители данных), с которыми имеет информационную связь детализируемая подсистема или процесс на родительской диаграмме;
- правило нумерации - означает, что при детализации процессов должна поддерживаться их иерархическая нумерация. Например, процессы, детализирующие процесс с номером 12, получают номера 12.1, 12.2, 12.3 и т.д.
Миниспецификация (описание логики процесса) должна формулировать его основные функции таким образом, чтобы в дальнейшем специалист, выполняющий реализацию проекта, смог выполнить их или разработать соответствующую программу.
Миниспецификация является конечной вершиной иерархии ДПД. Решение о завершении детализации процесса и использовании миниспецификации принимается аналитиком исходя из следующих критериев:
- наличия у процесса относительно небольшого количества входных и выходных потоков данных (2-3 потока);
- возможности описания преобразования данных процессом в виде последовательного алгоритма;
- выполнения процессом единственной логической функции преобразования входной информации в выходную;
- возможности описания логики процесса при помощи миниспецификации небольшого объема (не более 20-30 строк).
При построении иерархии ДПД переходить к детализации процессов следует только после определения содержания всех потоков и накопителей данных, которое описывается при помощи структур данных. Структуры данных конструируются из элементов данных и могут содержать альтернативы, условные вхождения и итерации. Условное вхождение означает, что данный компонент может отсутствовать в структуре. Альтернатива означает, что в структуру может входить один из перечисленных элементов. Итерация означает вхождение любого числа элементов в указанном диапазоне. Для каждого элемента данных может указываться его тип (непрерывные или дискретные данные). Для непрерывных данных может указываться единица измерения (килограммы, рубли и т.п.), диапазон значений, точность представления и форма физического кодирования. Для дискретных данных может указываться таблица допустимых значений.
После построения законченной модели системы ее необходимо верифицировать (проверить на полноту и согласованность). В полной модели все ее объекты (подсистемы, процессы, потоки данных) должны быть подробно описаны и детализированы. Выявленные недетализированные объекты следует детализировать, вернувшись на предыдущие шаги разработки. В согласованной модели для всех потоков данных и накопителей данных должно выполняться правило сохранения информации: все поступающие куда-либо данные должны быть считаны, а все считываемые данные должны быть записаны.
Методология IDEF. Метод IDEF1, разработанный Т.Рэмей (T.Ramey), основан на подходе П.Чена и позволяет построить модель данных, эквивалентную реляционной модели в третьей нормальной форме. В настоящее время на основе совершенствования методологии IDEF1 создана ее новая версия - методология IDEF1X. IDEF1X разработана с учетом таких требований, как простота изучения и возможность автоматизации. IDEF1X-диаграммы используются рядом распространенных CASE-средств (в частности, ERwin, Design/IDEF).
Сущность в методологии IDEF1X является независимой от идентификаторов или просто независимой, если каждый экземпляр сущности может быть однозначно идентифицирован без определения его отношений с другими сущностями. Сущность называется зависимой от идентификаторов или просто зависимой, если однозначная идентификация экземпляра сущности зависит от его отношения к другой сущности (рисунок 20).
Рисунок 20 - Сущности
Каждой сущности присваивается уникальное имя и номер, разделяемые косой чертой "/" и помещаемые над блоком.
Связь может дополнительно определяться с помощью указания степени или мощности (количества экземпляров сущности-потомка, которое может существовать для каждого экземпляра сущности-родителя). В IDEF1X могут быть выражены следующие мощности связей:
- каждый экземпляр сущности-родителя может иметь ноль, один или более связанных с ним экземпляров сущности-потомка;
- каждый экземпляр сущности-родителя должен иметь не менее одного связанного с ним экземпляра сущности-потомка;
- каждый экземпляр сущности-родителя должен иметь не более одного связанного с ним экземпляра сущности-потомка;
- каждый экземпляр сущности-родителя связан с некоторым фиксированным числом экземпляров сущности-потомка.
Если экземпляр сущности-потомка однозначно определяется своей связью с сущностью-родителем, то связь называется идентифицирующей, в противном случае - неидентифицирующей.
Идентифицирующая связь между сущностью-родителем и сущностью-потомком изображается сплошной линией (рисунок 21). Сущность-потомок в идентифицирующей связи является зависимой от идентификатора сущностью. Сущность-родитель в идентифицирующей связи может быть как независимой, так и зависимой от идентификатора сущностью (это определяется ее связями с другими сущностями).
Рисунок 21 - Идентифицирующая связь
Пунктирная линия изображает неидентифицирующую связь (рисунок 22). Сущность-потомок в неидентифицирующей связи будет независимой от идентификатора, если она не является также сущностью-потомком в какой-либо идентифицирующей связи.
Рисунок 22 - Неидентифицирующая связь
Атрибуты изображаются в виде списка имен внутри блока сущности. Атрибуты, определяющие первичный ключ, размещаются наверху списка и отделяются от других атрибутов горизонтальной чертой (рисунок 23).
Рисунок 23 - Атрибуты и первичные ключи
Сущности могут иметь также внешние ключи (Foreign Key), которые могут использоваться в качестве части или целого первичного ключа или неключевого атрибута. Внешний ключ изображается с помощью помещения внутрь блока сущности имен атрибутов, после которых следуют буквы FK в скобках.
Методология DATARUN и инструментальное средство SE Companion. Современные методологии и реализующие их технологии поставляются в электронном виде вместе с CASE-средствами и включают библиотеки процессов, шаблонов, методов, моделей и других компонент, предназначенных для построения ПО того класса систем, на который ориентирована методология. Электронные методологии включают также средства, которые должны обеспечивать их адаптацию для конкретных пользователей и развитие методологии по результатам выполнения конкретных проектов.
Процесс адаптации заключается в удалении ненужных процессов, действий ЖЦ и других компонентов методологии, в изменении неподходящих или в добавлении собственных процессов и действий, а также методов, моделей, стандартов и руководств. Настройка методологии может осуществляться также по следующим аспектам: этапы и операции ЖЦ, участники проекта, используемые модели ЖЦ, поддерживаемые концепции и др.
Электронные методологии и технологии (и поддерживающие их CASE-средства) составляют ядро комплекса согласованных инструментальных средств среды разработки ИС.
Одной из наиболее распространенных в мире электронных методологий является методология DATARUN. В соответствии с методологией DATARUN ЖЦ ПО разбивается на стадии, которые связываются с результатами выполнения основных процессов, определяемых стандартом ISO 12207. Каждую стадию кроме ее результатов должен завершать план работ на следующую стадию.
Стадия формирования требований и планирования включает в себя действия по определению начальных оценок объема и стоимости проекта. Должны быть сформулированы требования и экономическое обоснование для разработки ИС, функциональные модели (модели бизнес-процессов организации) и исходная концептуальная модель данных, которые дают основу для оценки технической реализуемости проекта. Основными результатами этой стадии должны быть модели деятельности организации (исходные модели процессов и данных организации), требования к системе, включая требования по сопряжению с существующими ИС, исходный бизнес-план.
Стадия концептуального проектирования начинается с детального анализа первичных данных и уточнения концептуальной модели данных, после чего проектируется архитектура системы. Архитектура включает в себя разделение концептуальной модели на обозримые подмодели. Оценивается возможность использования существующих ИС и выбирается соответствующий метод их преобразования. После построения проекта уточняется исходный бизнес-план. Выходными компонентами этой стадии являются концептуальная модель данных, модель архитектуры системы и уточненный бизнес-план.
На стадии спецификации приложений продолжается процесс создания и детализации проекта. Концептуальная модель данных преобразуется в реляционную модель данных. Определяется структура приложения, необходимые интерфейсы приложения в виде экранов, отчетов и пакетных процессов вместе с логикой их вызова. Модель данных уточняется бизнес-правилами и методами для каждой таблицы. В конце этой стадии принимается окончательное решение о способе реализации приложений. По результатам стадии должен быть построен проект ИС, включающий модели архитектуры ИС, данных, функций, интерфейсов (с внешними системами и с пользователями), требований к разрабатываемым приложениям (модели данных, интерфейсов и функций), требований к доработкам существующих ИС, требований к интеграции приложений, а также сформирован окончательный план создания ИС.
На стадии разработки, интеграции и тестирования должна быть создана тестовая база данных, частные и комплексные тесты. Проводится разработка, прототипирование и тестирование баз данных и приложений в соответствии с проектом. Отлаживаются интерфейсы с существующими системами. Описывается конфигурация текущей версии ПО. На основе результатов тестирования проводится оптимизация базы данных и приложений. Приложения интегрируются в систему, проводится тестирование приложений в составе системы и испытания системы. Основными результатами стадии являются готовые приложения, проверенные в составе системы на комплексных тестах, текущее описание конфигурации ПО, скорректированная по результатам испытаний версия системы и эксплуатационная документация на систему.
Стадия внедрения включает в себя действия по установке и внедрению баз данных и приложений. Основными результатами стадии должны быть готовая к эксплуатации и перенесенная на программно-аппаратную платформу заказчика версия системы, документация сопровождения и акт приемочных испытаний по результатам опытной эксплуатации.
Стадии сопровождения и развития включают процессы и операции, связанные с регистрацией, диагностикой и локализацией ошибок, внесением изменений и тестированием, проведением доработок, тиражированием и распространением новых версий ПО в места его эксплуатации, переносом приложений на новую платформу и масштабированием системы. Стадия развития фактически является повторной итерацией стадии разработки.
Методология DATARUN опирается на две модели или на два представления:
- модель организации;
- модель ИС.
Методология DATARUN базируется на системном подходе к описанию деятельности организации. Построение моделей начинается с описания процессов, из которых затем извлекаются первичные данные (стабильное подмножество данных, которые организация должна использовать для своей деятельности). Первичные данные описывают продукты или услуги организации, выполняемые операции (транзакции) и потребляемые ресурсы. К первичным относятся данные, которые описывают внешние и внутренние сущности, такие как служащие, клиенты или агентства, а также данные, полученные в результате принятия решений, как например, графики работ, цены на продукты.
Основной принцип DATARUN заключается в том, что первичные данные, если они должным образом организованы в модель данных, становятся основой для проектирования архитектуры ИС. Архитектура ИС будет более стабильной, если она основана на первичных данных, тесно связанных с основными деловыми операциями, определяющими природу бизнеса, а не на традиционной функциональной модели.
Рисунок 24 - Модель ИС
Подход DATARUN преследует две цели:
- определить стабильную структуру, на основе которой будет строиться ИС. Такой структурой является модель данных, полученная из первичных данных, представляющих фундаментальные процессы организации;
- спроектировать ИС на основании модели данных.
Объекты, формируемые на основании модели данных, являются объектами базы данных, обычно размещаемыми на серверах в среде клиент/сервер. Объекты интерфейса, определенные в архитектуре компьютерной системы, обычно размещаются на клиентской части. Модель данных, являющаяся основой для спецификации совместно используемых объектов базы данных и различных объектов интерфейса, обеспечивает сопровождаемость ИС. На рисунке 25 представлена последовательность шагов проектирования ИС.
На рисунке 26 определены модели, создаваемые в процессе разработки ИС. Для их создания используется CASE-средство Silverrun. Silverrun обеспечивает автоматизацию проведения проектных работ в соответствии с методологией DATARUN. Предоставляемая этими средствами среда проектирования дает возможность руководителю проекта контролировать проведение работ, отслеживать выполнение работ, вовремя замечать отклонения от графика. Каждый участник проекта, подключившись к этой среде, может выяснить содержание и сроки выполнения порученной ему работы, детально изучить технику ее выполнения в гипертексте по технологиям, и вызвать инструмент (модуль Silverrun) для реального выполнения работы.
Информационная система создается последовательным построением ряда моделей, начиная с модели бизнес-процессов и заканчивая моделью программы, автоматизирующей эти процессы.
Рисунок 25 - Последовательность шагов проектирования системы
Рисунок 26 - Модели, создаваемые с помощью подхода DATARUN
- BPM (Business Process Model) - модель бизнес-процессов.
- PDS (Primary Data Structure) - структура первичных данных.
- CDM (Conceptual Data Model) - концептуальная модель данных.
- SPM (System Process Model) - модель процессов системы.
- ISA (Information System Architecture) - архитектура информационной системы.
- ADM (Application Data Model) - модель данных приложения.
- IPM (Interface Presentation Model) - модель представления интерфейса.
- ISM (Interface Specification Model) - модель спецификации интерфейса.
Создаваемая ИС должна основываться на функциях, выполняемых организацией. Поэтому первая создаваемая модель - это модель бизнес-процессов, построение которой осуществляется в модуле Silverrun BPM. Для этой модели используется специальная нотация BPM. В процессе анализа и спецификации бизнес-функций выявляются основные информационные объекты, которые документируются как структуры данных, связанные с потоками и хранилищами модели. Источниками для создания структур являются используемые в организации документы, должностные инструкции, описания производственных операций. Эти данные вводятся в том виде, как они существуют в деятельности организации. Нормализация и удаление избыточности производится позже при построении концептуальной модели данных в модуле Silverrun ERX. После создания модели бизнес-процессов информация сохраняется в репозитории проекта.
В процессе обследования работы организации выявляются и документируются структуры первичных данных. Эти структуры заносятся в репозиторий модуля BPM при описании циркулирующих в организации документов, сообщений, данных. В модели бизнес-процессов первичные структуры данных связаны с потоками и хранилищами информации.
На основе структур первичных данных в модуле Silverrun ERX создается концептуальная модель данных (ER-модель). От структур первичных данных концептуальная модель отличается удалением избыточности, стандартизацией наименований понятий и нормализацией. Эти операции в модуле ERX выполняются при помощи встроенной экспертной системы. Цель концептуальной модели данных - описать используемую информацию без деталей возможной реализации в базе данных, но в хорошо структурированном нормализованном виде.
На основе модели бизнес-процессов и концептуальной модели данных проектируется архитектура ИС. Определяются входящие в систему приложения, для каждого приложения специфицируются используемые данные и реализуемые функции. Архитектура ИС создается в модуле Silverrun BPM с использованием специальной нотации ISA. Основное содержание этой модели - структурные компоненты системы и навигация между ними. Концептуальная модель данных разбивается на части, соответствующие входящим в состав системы приложениям.
Перед разработкой приложений должна быть спроектирована структура корпоративной базы данных. DATARUN предполагает использование базы данных, основанной на реляционной модели. Концептуальная модель данных после нормализации переносится в модуль реляционного моделирования Silverrun RDM с помощью специального моста ERX-RDM. Преобразование модели из формата ERX в формат RDM происходит автоматически без вмешательства пользователя. После преобразования форматов получается модель реляционной базы данных. Эта модель детализируется в модуле Silverrun RDM определением физической реализации (типов данных СУБД, ключей, индексов, триггеров, ограничений ссылочной целостности). Правила обработки данных можно задавать как непосредственно на языке программирования СУБД, так и в декларативной форме, не привязанной к реализации. Мосты Silverrun к реляционным СУБД переводят эти декларативные правила на язык требуемой системы, что снижает трудоемкость программирования процедур сервера базы данных, а также позволяет из одной спецификации генерировать приложения для разных СУБД.
С помощью модели системных процессов детально документируется поведение каждого приложения. В модуле BPM создается модель системных процессов, определяющая, каким образом реализуются бизнес-процессы. Эта модель создается отдельно для каждого приложения и тесно связана с моделью данных приложения.
Приложение состоит из интерфейсных объектов (экранных форм, отчетов, процедур обработки данных). Каждый интерфейс системы (экранная форма, отчет, процедура обработки данных) имеет дело с подмножеством базы данных. В модели данных приложения (созданной в модуле RDM) создается подсхема базы данных для каждого интерфейса этого приложения. Уточняются также правила обработки данных, специфичные для каждого интерфейса. Интерфейс работает с данными в ненормализованном виде, поэтому спецификация данных, как ее видит интерфейс, оформляется как отдельная подсхема модели данных интерфейса.
Модель представления интерфейса - это описание внешнего вида интерфейса, как его видит конечный пользователь системы. Это может быть как документ, показывающий внешний вид экрана или структуру отчета, так и сам экран (отчет), созданный с помощью одного из средств визуальной разработки приложений - так называемых языков четвертого поколения (4GL - Fourth Generation Languages). Так как большинство языков 4GL позволяют быстро создавать работающие прототипы приложений, пользователь имеет возможность увидеть работающий прототип системы на ранних стадиях проектирования.
После создания подсхем реляционной модели для приложений проектируется детальная структура каждого приложения в виде схемы навигации экранов, отчетов, процедур пакетной обработки. На данном шаге эта структура детализируется до указания конкретных столбцов и таблиц базы данных, правил их обработки, вида экранных форм и отчетов. Полученная модель детально документирует приложение и непосредственно используется для программирования специфицированных интерфейсов.
Далее, с помощью средств разработки приложений происходит физическое создание системы: приложения программируются и интегрируются в информационную систему.
Современные CASE-средства охватывают обширную область поддержки многочисленных технологий проектирования ИС: от простых средств анализа и документирования до полномасштабных средств автоматизации, покрывающих весь жизненный цикл ПО.
Наиболее трудоемкими этапами разработки ИС являются этапы анализа и проектирования, в процессе которых CASE-средства обеспечивают качество принимаемых технических решений и подготовку проектной документации. При этом большую роль играют методы визуального представления информации. Это предполагает построение структурных или иных диаграмм в реальном масштабе времени, использование многообразной цветовой палитры, сквозную проверку синтаксических правил. Графические средства моделирования предметной области позволяют разработчикам в наглядном виде изучать существующую ИС, перестраивать ее в соответствии с поставленными целями и имеющимися ограничениями.
В разряд CASE-средств попадают как относительно дешевые системы для персональных компьютеров с весьма ограниченными возможностями, так и дорогостоящие системы для неоднородных вычислительных платформ и операционных сред. Так, современный рынок программных средств насчитывает около 300 различных CASE-средств, наиболее мощные из которых так или иначе используются практически всеми ведущими западными фирмами.
Обычно к CASE-средствам относят любое программное средство, автоматизирующее ту или иную совокупность процессов жизненного цикла ПО и обладающее следующими основными характерными особенностями:
- мощные графические средства для описания и документирования ИС, обеспечивающие удобный интерфейс с разработчиком и развивающие его творческие возможности;
- интеграция отдельных компонент CASE-средств, обеспечивающая управляемость процессом разработки ИС;
- использование специальным образом организованного хранилища проектных метаданных (репозитория).
- Интегрированное CASE-средство (или комплекс средств, поддерживающих полный ЖЦ ПО) содержит следующие компоненты;
- репозиторий, являющийся основой CASE-средства. Он должен обеспечивать хранение версий проекта и его отдельных компонентов, синхронизацию поступления информации от различных разработчиков при групповой разработке, контроль метаданных на полноту и непротиворечивость;
- графические средства анализа и проектирования, обеспечивающие создание и редактирование иерархически связанных диаграмм (DFD, ERD и др.), образующих модели ИС;
- средства разработки приложений, включая языки 4GL и генераторы кодов;
- средства конфигурационного управления;
- средства документирования;
- средства тестирования;
- средства управления проектом;
- средства реинжиниринга.
Все современные CASE-средства могут быть классифицированы в основном по типам и категориям. Классификация по типам отражает функциональную ориентацию CASE-средств на те или иные процессы ЖЦ. Классификация по категориям определяет степень интегрированности по выполняемым функциям и включает отдельные локальные средства, решающие небольшие автономные задачи (tools), набор частично интегрированных средств, охватывающих большинство этапов жизненного цикла ИС (toolkit) и полностью интегрированные средства, поддерживающие весь ЖЦ ИС и связанные общим репозиторием. Помимо этого, CASE-средства можно классифицировать по следующим признакам:
- применяемым методологиям и моделям систем и БД;
- степени интегрированности с СУБД;
- доступным платформам.
Классификация по типам в основном совпадает с компонентным составом CASE-средств и включает следующие основные типы:
- средства анализа (Upper CASE), предназначенные для построения и анализа моделей предметной области (Design/IDEF (Meta Software), BPwin (Logic Works));
- средства анализа и проектирования (Middle CASE), поддерживающие наиболее распространенные методологии проектирования и использующиеся для создания проектных спецификаций (Vantage Team Builder (Cayenne), Designer/2000 (ORACLE), Silverrun (CSA), PRO-IV (McDonnell Douglas), CASE.Аналитик (МакроПроджект)). Выходом таких средств являются спецификации компонентов и интерфейсов системы, архитектуры системы, алгоритмов и структур данных;
- средства проектирования баз данных, обеспечивающие моделирование данных и генерацию схем баз данных (как правило, на языке SQL) для наиболее распространенных СУБД. К ним относятся ERwin (Logic Works), S-Designor (SDP) и DataBase Designer (ORACLE). Средства проектирования баз данных имеются также в составе CASE-средств Vantage Team Builder, Designer/2000, Silverrun и PRO-IV;
- средства разработки приложений. К ним относятся средства 4GL (Uniface (Compuware), JAM (JYACC), PowerBuilder (Sybase), Developer/2000 (ORACLE), New Era (Informix), SQL Windows (Gupta), Delphi (Borland) и др.) и генераторы кодов, входящие в состав Vantage Team Builder, PRO-IV и частично - в Silverrun;
- средства реинжиниринга, обеспечивающие анализ программных кодов и схем баз данных и формирование на их основе различных моделей и проектных спецификаций. Средства анализа схем БД и формирования ERD входят в состав Vantage Team Builder, PRO-IV, Silverrun, Designer/2000, ERwin и S-Designor. В области анализа программных кодов наибольшее распространение получают объектно-ориентированные CASE-средства, обеспечивающие реинжиниринг программ на языке С++ (Rational Rose (Rational Software), Object Team (Cayenne)).
Вспомогательные типы включают:
- средства планирования и управления проектом (SE Companion, Microsoft Project и др.);
- средства конфигурационного управления (PVCS (Intersolv));
- средства тестирования (Quality Works (Segue Software));
- средства документирования (SoDA (Rational Software)).
На сегодняшний день Российский рынок программного обеспечения располагает следующими наиболее развитыми CASE-средствами:
- Vantage Team Builder (Westmount I-CASE);
- Designer/2000;
- Silverrun;
- ERwin+BPwin;
- S-Designor;
- CASE.Аналитик.
Кроме того, на рынке постоянно появляются как новые для отечественных пользователей системы (например, CASE /4/0, PRO-IV, System Architect, Visible Analyst Workbench, EasyCASE), так и новые версии и модификации перечисленных систем.
3 Глава. Разработка концептуальной модели информационной системы для поддержки принятия управленческих решений при формировании маркетинговой стратегии региона
Процесс создания и внедрения любой ИС принято разделять на четыре последовательные фазы: анализ, глобальное проектирование (проектирование архитектуры системы), детальное проектирование и реализация (программирование). Разработка концепции ИС ограничивается первыми двумя фазами: анализ предметной области и глобальное проектирование, т.е. представление ИС в «целом». При этом фаза глобального проектирования не предусматривает детальную декомпозицию ИС и процессов, происходящих в ней.
... , обладающими достаточными знаниями и опытом в области, к которой принадлежит ситуация принятия управленческого решениям Стабильность. По стабильности информация может быть переменной (текущей) и постоянной (условно-постоянной). Переменная информация отражает фактические количественные и качественные характеристики производственно-хозяйственной деятельности фирмы. Она может меняться для каждого ...
... системы заключается в автоматизации и замене ручного труда автоматизированным трудом с высвобождением персонала. Конкретно будет разрабатываться автоматизированная информационная система для управления портфелем реальных инвестиций предприятия СФ ОАО «ВолгаТелеком». Разработка данной системы приведет к экономии затрат, связанных с проведением анализа и оценки инвестиционных решений и компоновки ...
... которых может способствовать повышению объемов реализации выпускаемой продукции. С целью повышения эффективности деятельности ООО «ДаНаМа» предложи и проанализируем ряд мероприятий направленных на стимулирование сбыта выпускаемой продукции. 3. Усовершенствование системы стимулирования сбыта 3.1. Анализ схемы продвижения продукции ООО «ДаНаМа» в сравнении со схемами конкурентов Продвижение ...
... . руб.? Как изменится точка безубыточности ТБУ, если повысить цену реализации продукции Цр в среднем на 5%, то есть установить цену на уровне 2100 руб. за 1 т? Для обоснованного принятия управленческого решения далее выполним практические расчеты, которые позволяли бы руководству предприятия принимать необходимые и, главное, обоснованные решения. Как изменится прибыль при увеличении объема ...
0 комментариев