2. Основные свойства стоматологического фарфора

 

Физические свойства: Стоматологические фарфоры близки к стек­лам, структура их изотропна. Они представляют собой переохлажден­ные жидкости и вследствие высокой вязкости могут со­хранять стекло­образное изотропное состояние при охлаждении без за­метной кристал­лизации.

Стоматологические фарфоры могут переходить при размягчении или отвердении из твердого в жидкое состояние (и обратно) без образова­ния новой фазы.

Стекла не имеют собственной температуры плавления, а характеризу­ются интервалом размягчения. Фарфор образуется в резуль­тате слож­ного физико-химического процесса взаимодействия компонен­тов фар­форовой массы при высокой температуре. Так, при температуре 1100-1300°С калиевый шпат превращается в калиевое полевошпатное стекло. Каолин и кварц имеют более высокую температуру плавления, чем по­левой шпат. Однако в расплаве полевошпатного стекла каолин и кварц взаимодействуют со стеклом. При этом каолин образует игольча­тые кристаллы муллита, пронизывающие всю массу фарфора. Частицы кварца оплавляются, теряют игольчатую форму, и небольшое их коли­чество переходит в расплав стекла.

Многочисленными микроскопическими исследованиями установлены следующие основные структурные элементы фарфора:

1.стекловидная изотропная масса, состоящая из полевошпатного стекла с различной степенью насыщения;

2.нерастворившиеся в стекле оплавленные частицы кварца;

3.кристаллы муллита, распределенные в расплаве кремнеземполевош­патного стекла;

4.поры.

Стекловидная изотропная масса в современных стоматологических фарфорах составляет их основную массу. Она обуславливает их качества и свойства. Количество стеклофазы возрастает при повы­шении тем­пературы плавления и увеличения времени плавки. Соотно­шение кри­сталлической и стекловидной фаз определяет физические

свойства фар­фора. Содержание стеклофазы в фарфоровых массах обес­печивает их блеск и прозрачность. Завышенная температура обжига приводит к по­явлению на поверхности изделия чрезмерного блеска и мелких пу­зырь­ков. При чрезмерном увеличении стеклофазы проч­ность фарфора уменьшается.

Нерастворившиеся в полевошпатном стекле частицы кварца вместе с кристаллами муллита и глинозема образуют скелет фарфора. Важным фактором в строении фарфора являются поры. Наибольшую пористость (35-45%) материал имеет перед началом спекания.

По мере образования стекловидной фазы пористость снижается. При этом повышается плотность материала и, соответственно, сокращаются размеры изделия. Полному уничтожению пор мешают заключенные в них пузырьки газов, образующихся в результате физико-химического взаимодействия отдельных компонентов массы. Высокая вязкость поле­вошпатного стекла мешает удалению газовых пузырьков из фарфоро­вого материала, чем обуславливается образование закрытых пор.

Современный стоматологический фарфор по температуре обжига клас­сифицируется как тугоплавкий (1300-1370°С), среднеплавкий (1090-1260°С) и низкоплавкий (870-1065°С).

Состав тугоплавкого, среднеплавкого и низкоплавкого фарфора (%)

 

полевой шпат

кварц

 каолин

Тугоплавкий

81 15 4

Среднеплавкий

61 29 10

Низкоплавкий

60 12 28

Тугоплавкий фарфор обычно используется для фабричного изготовле­ния искусственных зубов для несъемных протезов.

Среднеплавкие и низкоплавкие фарфоры применяются для изготовле­ния коронок, вкладок и мостовидных протезов. Использование низко­плавких и среднеплавких фарфоров позволило применять печи для об­жига с нихромовыми и другими нагревателями.

Оптические свойства фарфора являются одним из главных достоинств искусственных зубов. Коронка естественного зуба просве­чи­вает, но не прозрачна, как стекло. Это объясняется тем, что наряду с аб­сорб­цией света прозрачность выражается соотношением диффузно рас­сеян­ного и проходящего света. Свет, состоящий из волн разной длины, попадая на поверхность зуба, может поглощаться, отражаться и прелом­ляться.

Короткие волны отражаются от эмали режущего края зуба, создавая голубоватый оттенок. Длинные волны, проходя через срединную часть зуба, содержащую основную массу твердых тканей, отражаясь и пре­ломляясь, образуют множество цветных оттенков от желто-оранжевого до голубого. В пришеечной части эмаль резко утончается. Этот участок имеет цвет от желто-оранжевого до коричневого. Стоматологический фарфор также является гетерогенным по структуре материалом.

Оптический эффект фарфора близок к таковому естественных зубов в тех случаях, когда удается найти правильное соотношение между стек­лофазой и замутнителями фарфора. Обычно этому мешает большое ко­личество воздушных пор и замутняющее действие кристаллов. Умень­шение кристаллических включений приводит к повышению деформа­ций изделия во время обжига и понижению прочности фарфора. Такой путь повышения прозрачности имеет определенный предел.

Второй путь увеличения прозрачности стоматологического фарфора заключается в уменьшении размера и количества газовых пор. До об­жига суммарный объем воздушных включений сконденсированной фар­форовой кашицы составляет 20-45%.

Для уменьшения газовых пор предложено 4 способа:

1. Обжиг фарфора в вакууме. При этом способе воздух удаляется раньше, чем он успевает задержаться в расплавленной массе.

2. Обжиг фарфора в диффузном газе (водород, гелий), когда обычную атмосферу печи заполняют способным к диффузии газом (метод не­пригоден на практике).

3. Обжиг фарфора под давлением 10 атм. Если расплавленный фарфор охлаждать под давлением, то воздушные пузырьки могут умень­шиться в объеме, и их светопреломляющее воздействие значительно ослабевает. Давление поддерживают до полного охлаждения фар­фора. Этот способ еще применяют на некоторых заводах для произ­водства искусственных зубов. Недостаток метода состоит в невоз­можности повторного разогрева и глазурирования под атмосферным давлением, т.к. пузырьки газа восстанавливаются при этом до перво­начальных размеров.

4. При атмосферном обжиге для повышения прозрачности фарфора ис­пользуется крупнозернистый материал. При обжиге такого фарфора образуются более крупные поры, но количество их значительно меньше, чем у мелкозернистых материалов.

Из указанных выше четырех способов наибольшее распространение получил вакуумный обжиг, который применяется в настоящее время как для изготовления протезов в зуботехнических лабораториях, так и на за­водах для производства искусственных зубов. Фарфор,  обжигае­-

мый в вакууме, имеет в 60 раз меньше пор, чем при атмосферном об­жиге.

При обжиге фарфоровых масс усадка составляет 20-40%. Причинами такой усадки являются:

·недостаточное уплотнение (конденсация) частичек керамической массы;

·потеря жидкости, необходимой для приготовления фарфоровой ка­шицы;

·выгорание органических добавок (декстрин, сахар, крахмал, анилино­вые красители).

Большое практическое значение имеет направление усадки. Усадка может быть:

·в направлении большего тепла;

·в направлении силы тяжести;

·в направлении большей массы.

В первом и втором случаях усадка незначительна, т.к. в современных печах гарантировано равномерное распределение тепла, а сила тяжести невелика. Усадка в направлении больших масс значительно выше. Масса в расплаве ввиду поверхностного натяжения и связи между час­тицами стремится принять форму капли. При этом она подтягивается от периферических участков (т.е. от шейки коронки, например) к централь­ной части коронки (к большей массе фарфора), что, в конеч­ном счете может привести к появлению щели между искусственной фарфоровой коронкой и уступом модели препарированного зуба.

Прочность фарфора зависит от рецептуры (состава компонентов) фар­форовой массы и технологии производства. Основными показателями прочности фарфора являются:

·прочность при растяжении;

·прочность при сжатии;

·прочность при изгибе.

Большое влияние на прочность оказывает метод конденсации части­чек фарфора.

 Существует четыре метода конденсации:

·электромеханической вибрацией;

·коронковой кистью;

·методом гравитации (без конденсации) ;

·рифленым инструментом.

Большинство исследователей считают, что наилучшего уплотнения фарфоровой массы можно достигнуть рифленым инструментом с после­дующим применением давления фильтровальной бумагой при отсасы­-

ва­нии жидкости.

Среди технологических условий, которые существенно влияют на прочностные показатели, необходимо отметить следующие:

·необходимое уплотнение материала, т.е. конденсация частичек фар­фора;

·хорошее просушивание массы перед обжигом;

·оптимальное (как правило не более 3-4) количество обжигов;

·проведение обжига при адекватной для данной массы температуре;

·время обжига;

·способ применения вакуума при обжиге;

·глазурирование поверхности протеза.

Лучшие сорта стоматологического фарфора при соблюдении опти­мальных режимов изготовления имеют прочность при изгибе 600-700кг/см2. Подобная прочность стоматологического материала является недостаточной. Поэтому условно можно выделить, как минимум, два основных направления в поиске путей повышения прочности фар­фора:


Информация о работе «Материаловедение в ортопедической стоматологии»
Раздел: Медицина, здоровье
Количество знаков с пробелами: 143294
Количество таблиц: 3
Количество изображений: 0

Похожие работы

Скачать
67670
10
23

... предприятиями-изготовителями. Вследствие этого многие специалисты рекомендуют переход с пластмасс акрилатного ряда, на термопластические материалы, необладающих данными недостатками. 2.3 Характеристика современных стоматологических термопластических материалов   Основу термопластических масс составляют природные или искусственные высокомолекулярные соединения, состоящие из больших по ...

Скачать
333238
0
0

... переломов ослабленных костей / Тр. конгресса Человек и его здоровье. СПб, 1999 - с. 55. 44.  Воложин А.И., Курдюмов С.Г., Орловский В.П., Баринов С.М. и др. Создание нового поколения биосовместимых материалов на основе фосфатов кальция для широкого применения в медицинской практике // Технологии живых систем. 2004. Т.1, №.1. С. 41-56. 45.  Безруков В.М., Григорян А.С. Гидроксилапатит как ...

Скачать
66255
0
0

... зубов пациента. Объединением “Кристар” (Киев) и медицинским соисполнителем - кафедрой про- педевтики, ортопедической стоматологии и ортодонтии Национального медицинского Университета Украины была разработана масса для металлокерамики “Ultropaline” (Флис П.С. и соавт., 2000). Масса стала известна не только на Украине. Она привлекла к себе внимание и за океаном, и с начала 2000 года все права на ...

Скачать
8234
1
0

... ). В общей сложности за выходом ММА следили в течение 25 суток. Полученные результаты представлены в таблице. Миграция метилметакрилата в водную среду после обработки образцов этиловым спиртом Серия Вид обработки Выход ММА за 25 дней, мкг/г базиса 1 Необрабртанные образцы 91+/-2 2 1 сутки в этаноле при 20oC 51+/-1 3 1,5 мин в этаноле при 70oC 67+/-6 4 3 мин в этаноле ...

0 комментариев


Наверх