81. Активное сопротивление обмотки ротора с учетом влияния эффекта вытеснения тока.
ξ = 2πhc= 63,61hc = 63,61∙14,55∙10-3 = 0,9255
hc = hn2 – (hШ2 +h/Ш) = 15,3 –(0,75+0) = 14,55 мм
по рис. 9.57 для ξ = 0,9255 находим φ= 0,89∙ξ4, т.к. ξ<1
r/a = rc = 82,95∙10-6 Ом
φ= 0,89∙0,92554 = 0,65306
Глубина проникновения тока
hr = = = 8,8 мм
КД = φ/ = 0,96 (по рис. 9.58 для ξ = 0,9255 φ/ = 0,96)
так как (0,5∙9,1) ≤ 8,8 ≤ (6,6 +9,1∙0,5)
qr = = = 68,05 мм2
br = b1 - = 9,1 - = 7,62
Кr = qc / qr = 103,15 / 68,05 = 1,516
КR = 1+ = 1+ = 1,361
r2 = 118,6∙10-6 Ом; rс = 82,95 ∙10-6 Ом;
r/2ξ = КR∙ r/2 = 1,361∙0,3682 = 0,5011Ом
Индуктивное сопротивление обмотки ротора с учетом влияния эффекта вытеснения тока.
(по рис. 9.58) для ξ = 0,9255 φ/ = КД = 0,96
Кх = = = 0,9926
λn2ξ = λn2- Δλn2 ξ= 1,2376-0,029506 = 1,208
Δλn2 ξ= λ/n2 (1-КД) = [] (1-КД) =
= [] (1-0,96) = 0,029506
Х/2ξ = Х/2 ∙Кх = 1,046 ∙ 0,9926 = 1,03826
Пусковые параметры
Х12n = Kμ ∙ X12 = 1,463∙36,316 = 53,13
Х12 = -Х1 = -1,144 = 36,316
С1n = 1+ = 1+ = 1,0215
Расчет токов с учетом влияния эффекта вытеснения тока для S= 1
Rn = r1 +c1n∙r/2ξ / S = 0,522 +1,0215∙0,5011/1 = 1,034
Хn = X1+c1n∙ X/2ξ= 1,144+1,0215∙1,03826 = 2,2046
I/2n = = = 90,35 А
I1n = I/2 = 90,35= 92,135
Результаты расчетов для S= 1 и других скольжений сведены в табл. 1.2., 1.3
Таблица 1.2
№ п/п | Расчетная формула | размерность | Скольжение S | |||||
1 | 0,8 | 0,5 | 0,2 | 0,1 | Sком = 0,3449 | |||
1 | ξ=2πhc | - | 0,9255 | 0,828 | 0,6544 | 0,41 | 0,2927 | 0,5435 |
2 | φ (ξ) | - | 0,65306 | 0,4183 | 0,1633 | 0,0261 | 0,0065 | 0,0777 |
3 | hr =hc / (1+φ) | мм | 8,8 | 10,26 | 12,51 | 14,18 | 14,456 | 13,501 |
4 | Kr = qc /qr | - | 1,516 | 1,31 | 1,097 | 1 | 1 | 1,0314 |
5 | KR = 1 + ( Kr -1) | - | 1,361 | 1,217 | 1,068 | 1 | 1 | 1,022 |
6 | r/2ξ = KR ∙r/2 | Ом | 0,5011 | 0,4481 | 0,3932 | 0,3682 | 0,3682 | 0,3763 |
7 | KД = φ/(ξ) | - | 0,96 | 0,965 | 0,97 | 0,98 | 0,99 | 0,975 |
8 | λn2ξ = λn2 – Δλn2ξ | - | 1,21 | 1,212 | 1,2155 | 1,223 | 1,2302 | 1,21916 |
9 | Kx = Σλ2ξ/Σλ2 | - | 0,9926 | 0,9936 | 0,9944 | 0,9963 | 0,9981 | 0,99536 |
10 | X/2ξ = Kx ∙ X/2 | Ом | 1,0383 | 1,039 | 1,04 | 1,042 | 1,044 | 1,041 |
11 | Rn = r1 +c1n | Ом | 1,034 | 1,094 | 1,3254 | 2,403 | 4,283 | 1,6365 |
12 | Xn = x1 + c1n∙x/2ξ | Ом | 2,2046 | 2,20534 | 2,20636 | 2,2084 | 2,21045 | 2,2074 |
13 | I/2n = | А | 90,35 | 89,363 | 85,475 | 67,415 | 45,644 | 80,062 |
14 | I1n=I/2n | А | 92,135 | 91,131 | 87,176 | 68,804 | 46,682 | 81,67 |
Таблица 1.3
№ п/п | Расчетная формула | размерность | Скольжение S | |||||
1 | 0,8 | 0,5 | 0,2 | 0,1 | Sком = 0,3449 | |||
1 | Кнас = | - | 1,3 | 1,25 | 1,2 | 1,15 | 1,1 | 1,18 |
2 | Fn cp = 0,7 | 2524,985 | 2401,414 | 2205,307 | 1668,02 | 1082,513 | 2031,587 | |
3 | В= Fn ∙cp∙10-6/(1,6∙δ∙Cn) | Тл | 3,33 | 3,17 | 2,908 | 2,2 | 1,43 | 2,68 |
4 | Kδ = f (Bфδ) | - | 0,66 | 0,7 | 0,74 | 0,85 | 0,93 | 0,78 |
5 | С1 = (tz1 –bш1)(1-Кδ) | мм | 3,638 | 3,21 | 2,782 | 1,605 | 0,749 | 2,354 |
6 | λn1нас = λn1 – Δλn1нас | - | 0,7442 | 0,7623 | 0,7824 | 0,8505 | 0,9168 | 0,8047 |
7 | λД1нас = Кδ ∙ λД1 | - | 1,679 | 1,781 | 1,883 | 2,162 | 2,366 | 1,984 |
8 | X1нас = x1 Σλ1нас/Σλ1 | Ом | 0,8452 | 0,8774 | 0,9101 | 1,0035 | 1,076 | 0,9434 |
9 | С1nнас = 1+ Х1нас/Х12n | - | 1,016 | 1,0165 | 1,01713 | 1,0189 | 1,0203 | 1,01776 |
10 | С2 = (tz2 –bш2)(1-Кδ) | мм | 5,862 | 5,172 | 4,482 | 2,586 | 1,207 | 3,793 |
11 | λn2насξ = λn2ξ – Δλn2нас | - | 0,8119 | 0,8244 | 0,8409 | 0,9066 | 1,0072 | 0,8609 |
12 | λД2нас = Кδ ∙ λД2 | - | 1,716 | 1,82 | 1,924 | 2,21 | 2,418 | 2,028 |
13 | X/2насξ = X/2 ΣХ2насξ/ Σλ2 | Ом | 0,7015 | 0,7321 | 0,7638 | 0,8563 | 0,9375 | 0,7964 |
14 | Rnнас = r1 +c1n нас r/2ξ/S | Ом | 1,031 | 1,091 | 1,322 | 2,398 | 4,279 | 1,632 |
15 | Xnнас= X1нас+ С1nнас∙ X/2насξ | Ом | 1,558 | 1,622 | 1,687 | 1,876 | 2,0325 | 1,754 |
16 | I/2нас = U1/ | А | 117,754 | 112,552 | 102,646 | 72,262 | 46,445 | 91,816 |
17 | I1nнас= I/2нас | А | 119,32 | 1144,127 | 104,152 | 73,496 | 47,407 | 93,233 |
18 | К/нас = I1нас / I1n | - | 1,29 | 1,25 | 1,195 | 1,068 | 1,0155 | 1,1416 |
19 | I1* = I1нас / I1ном | - | 7,965 | 7,62 | 6,953 | 5 | 3,165 | 6,224 |
20 | M* = ()2KR ∙ | 2,605 | 2,66 | 3,106 | 3,603 | 2,977 | 3,45 |
Расчет проведен для точек характеристик соответствующих
S = 1; 0,8; 0,5; 0,2; 0,1; Sкр = 0,3449
Sкр = = = 0,3449
Индуктивное сопротивление обмоток.
Принимаем Кнас = 1,3
Fn.ср = =
= 0,7(0,625 + 0,7343 ∙ 0,7598) = 2524,985 А
СN = 0,64+2,5 = 0,64+2,5= 0,948
ВФδ = = = 3,33 Тл
по рис. 9.61 для ВФδ = 3,33 Тл Кδ = 0,66
Сэ1 = (tZ1+bШ1)(1-Кδ) = (14,2-3,5)(1-0,66) = 3,638 мм
Δλn1нас = = = 0,2484
[hк = = = 2,8 мм]
Δλn1нас = λn1- Δλn1нас = 0,9926 – 0,2484 = 0,7442
Коэффициент магнитной проводимости дифференциального рассеяния обмотки статора с учетом влияния насыщения:
λД1нас = λД1 ∙Кδ = 2,544 ∙ 0,66 = 1,679
Х1нас = Х1 = Х1=
= 1,144 = 0,8452
Х1нас – индуктивное сопротивление фазы обмотки статора с учетом влияния насыщения.
Коэффициент магнитной проводимости пазового рассеяния обмотки ротора с учетом влияния насыщения и вытеснения тока:
Δλn2нас = = = 0,3981
Сэ2 = (tZ2+bШ2)(1-Кδ) = (18,74 - 1,5)(1-0,66) = 5,8616 мм
λn2насξ = λn2ξ - Δλn2нас = 1,21 – 0,3981 = 0,8119
Коэффициент магнитной проводимости дифференциального рассеяния ротора с учетом влияния насыщения:
λД2нас = λД2 ∙ Кδ = 2,6 ∙ 0,66 = 1,716
Приведенное индуктивное сопротивление фазы обмотки ротора с учетом влияния эффекта вытеснения тока и насыщения:
Х/2ξ = Х/2 = Х/2 =
= = 0,7015
С1nкас = 1 + = = 1,016
Расчет токов и моментов.
Rn = r1 + C1nнас ;
Rn = 0,522 + 1,016 = 1,0311 Ом
Хn = Х1 нас + С1nнас ∙ Х/2насξ = 0,8452 + 1,016 ∙0,7015 = 1,558 Ом
I/2нас = = = 117,754 А
I1nнас = I/2нас =
= 117,754= 119,32 А
Кратность пускового тока с учетом влияния вытеснения тока и насыщения.
In*= = = 7,965
Кратность пускового момента с учетом влияния вытеснения тока и насыщения.
μn* = ()2 ∙КR = ()2 ∙1,361 = 2,605
Полученный в расчете коэффициент насыщения
К/нас = = = 1,29
Отличается от принятого от 0,77%, что удовлетворяет требованиям.
Принимаем при
S = 0,8 Кнас = 1,25
S = 0,5 Кнас = 1,2
S = 0,2 Кнас = 1,15
S = 0,1 Кнас = 1,1
S = 0,3449 Кнас = 1,18
Расчеты сведены в таблице 3.
Расчет рабочих характеристик для 2р = 4.
Рассчитываем рабочие характеристики для скольжений
S = 0,005; 0,01; 0,015; 0,02; 0,025; 0,03; 0,035; 0,04; Sном = 0,038
Результаты расчета сведены в таблицу 1.4
Таблица 1.4
№ п/п | Расчетная формула | размерность | Скольжение S | ||||||||
0,005 | 0,01 | 0,015 | 0,02 | 0,025 | 0,03 | 0,035 | 0,04 | Sком = 0,038 | |||
1 | а/r/2/S | Ом | 29,095 | 145,48 | 97 | 72,74 | 58,191 | 48,5 | 41,565 | 36,37 | 38,282 |
2 | R = a+ а/r/2/S | Ом | 293,164 | 147,694 | 99,214 | 74,954 | 60,405 | 50,714 | 43,78 | 38,584 | 40,496 |
3 | X= b+ b/r/2/S | Ом | 8,64 | 8,64 | 8,64 | 8,64 | 8,64 | 8,64 | 8,64 | 8,64 | 8,64 |
4 | Z = | Ом | 293,291 | 147,973 | 99,59 | 75,45 | 61,02 | 51,445 | 44,62 | 39,54 | 41,41 |
5 | I//2 = U1ном/Z | А | 0,7501 | 1,487 | 2,21 | 2,916 | 3,6054 | 4,28 | 4,931 | 5,564 | 5,313 |
6 | Cosφ/2 = R/Z | - | 0,9996 | 0,9984 | 0,9962 | 0,9934 | 0,9899 | 0,9858 | 0,9812 | 0,976 | 0,9779 |
7 | Sin φ/2 = X/Z | - | 0,02946 | 0,0584 | 0,08676 | 0,1145 | 0,1416 | 0,168 | 0,1936 | 0,2185 | 0,2085 |
8 | I1a = I0a + I//2 cosφ/2 | А | 1,0423 | 1,777 | 2,5 | 3,19 | 3,861 | 4,512 | 5,131 | 5,723 | 5,49 |
9 | I1p = I0p + I//2 sinφ/2 | А | 4,1791 | 4,244 | 4,35 | 4,491 | 4,668 | 4,88 | 5,112 | 5,373 | 5,286 |
10 | I1 = | А | 4,307 | 4,601 | 5,02 | 5,509 | 6,06 | 6,65 | 7,243 | 7,85 | 7,607 |
11 | I/2 = c1 ∙I//2 | А | 0,7953 | 1,577 | 2,343 | 3,092 | 3,823 | 4,54 | 5,23 | 5,9 | 5,6334 |
12 | Р1 = 3 ∙U1номI1a10-3 | кВт | 0,688 | 1,173 | 1,65 | 2,1054 | 2,55 | 2,978 | 3,39 | 3,78 | 3,6234 |
13 | Pэ1 = 3∙ I21r1 ∙10-3 | кВт | 0,1162 | 0,1326 | 0,1579 | 0,1901 | 0,23 | 0,277 | 0,3286 | 0,386 | 0,625 |
14 | Pэ2 = 3∙(I/2)2r/2 ∙10-3 | кВт | 0,0025 | 0,0097 | 0,02132 | 0,0371 | 0,057 | 0,08 | 0,1062 | 0,1351 | 0,1232 |
15 | Pдоб = 0,005 ∙Р1 | кВт | 0,00344 | 0,0059 | 0,00825 | 0,01053 | 0,01275 | 0,0149 | 0,01695 | 0,0189 | 0,01812 |
16 | ∑Р = Рст+Рмех+Рэ12 + Рэ1+Рдоб. | кВт | 0,2667 | 0,29272 | 0,33202 | 03823 | 0,4443 | 0,51645 | 0,5963 | 0,68455 | 0,64837 |
17 | Р2 = Р1 - ∑Р | кВт | 0,4213 | 0,8803 | 1,318 | 1,723 | 2,106 | 2,462 | 2,794 | 3,1 | 2,975 |
18 | η = 1- ∑P / P1 | - | 0,6124 | 0,7504 | 0,7988 | 0,8184 | 0,8258 | 0,8266 | 0,8241 | 0,8189 | 0,82106 |
19 | Cos φ = I1a/ I1 | - | 0,242 | 0,3862 | 0,498 | 0,5791 | 0,6371 | 0,6785 | 0,7084 | 0,729 | 0,7217 |
Расчет токов в пусковом режиме с учетом влияния эффекта вытеснения тока.
Активное сопротивление обмотки ротора с учетом влияния эффекта вытеснения тока.
[υрасч = 115 0С, ρ115 = 10-6 / 20,5 Ом ∙м, f1 = 50 Гц]
ξ= = 63,61∙ hc = 63,41 ∙14,55 ∙ 10-3 = 0,9255
hc = 14,55 мм; r/c = rc = 82,95 ∙10-6 Ом
φ = 0,89 ∙0,92554 = 0,65306, так как ξ < 1
hr = = = 8,8 мм
КД = φ/ = 0,96 (по рис. 9.58 для ξ = 0,9255).
qr = 68,05 мм2 ,
где br = b1 - (hr - ) = 9,1 - (8,8-) = 7,62 мм
qr = = = 68,05 мм2
Кr = qc / qr = 103,15 ∙ 10-6 / 68,05 ∙10-6 = 1,516
КR = 1 + ∙( Кr-1) = 1 + (1,516-1) = 1,4645,
где r2 = 92,14 ∙10-6 Ом
Приведенное сопротивление ротора с учетом влияния эффекта вытеснения тока.
r/2ξ = КR ∙ r/2 = 1,465 ∙ 1,294 = 1,896
Индуктивное сопротивление обмотки ротора с учетом влияния эффекта вытеснения тока.
Кх = = = 0,9924
λn2ξ = λn2 - Δ λn2ξ = 1,238 – 0,0295 = 1,2085
Δ λn2ξ = λ/n2 (1-КД) = [] (1- КД) = 0,0295
х/2ξ = х/2 ∙ Кх = 4,85 ∙0,9924 = 4,813
С1n = 1 + = 1+ = 1,0546
Х12 = - х1 = -3,18 = 49,743 Ом
Х12n = Х12 = Кμ∙х12 = 1,1714 ∙49,743 = 58,27 Ом
Sкр ≈ = = 16,46
Расчет токов с учетом влияния вытеснения тока.
Rn = r1 + C1n ∙ r/2ξ / S = 2,088 + 1,0546 ∙1,294 / 1 = 2,903
Хn = х1 + C1n ∙ х/2ξ = 3,18+ 1,0546 ∙4,813 = 8,256
I/2n = = = 25,14 А
I1n = I/2n = 25,14 = 27,242 А
Подробный расчет приведен для S= 1.
Данные расчета остальных точек сведены в таблице 1.5.
№ п/п | Расчетная формула | размерность | Скольжение S | |||||
1 | 0,8 | 0,5 | 0,2 | 0,1 | Sком = 0,1646 | |||
1 | ξ= 63,61hc | - | 0,9255 | 0,828 | 0,6544 | 0,414 | 0,2927 | 0,3755 |
2 | φ (ξ) | - | 0,6531 | 0,4183 | 0,1632 | 0,0261 | 0,0065 | 0,0177 |
3 | hr =hc (1+φ) | мм | 8,8 | 10,26 | 12,51 | 14,18 | 14,46 | 14,3 |
4 | Kr = qc /qr | - | 1,516 | 1,31 | 1,1 | 1 | 1 | 1 |
5 | KR = 1 + ( Kr -1) | - | 1,465 | 1,28 | 1,09 | 1 | 1 | 1 |
6 | r/2ξ = KR ∙r/2 | Ом | 1,896 | 1,656 | 1,41 | 1,294 | 1,294 | 1,294 |
7 | KД = φ/(ξ) | - | 0,96 | 0,965 | 0,97 | 0,98 | 0,99 | 0,985 |
8 | λn2ξ = λn2 – Δλn2ξ | - | 1,21 | 1,212 | 1,2155 | 1,223 | 1,2302 | 1,2265 |
9 | Kx = Σλ2ξ/Σλ2 | - | 0,9924 | 0,9936 | 0,9944 | 0,9963 | 0,9981 | 0,9972 |
10 | X/2ξ = Kx ∙ X/2 | Ом | 4,813 | 4,819 | 4,823 | 4,832 | 4,841 | 4,836 |
11 | Rn = r1 +c1n | Ом | 2,903 | 3,8 | 4,82 | 8,9 | 15,7 | 10,21 |
12 | Xn = x1 + c1n∙x/2ξ | Ом | 8,256 | 8,077 | 8,08 | 8,091 | 8,1 | 8,095 |
13 | I/2n = | А | 25,14 | 24,646 | 23,38 | 18,3 | 12,453 | 16,9 |
14 | I1n=I/2n | А | 27,242 | 26,653 | 25,31 | 19,94 | 13,821 | 18,466 |
Индуктивное сопротивление обмоток.
Принимаем Кнас = 1,05.
Fпр. ср. = (К/β+ Ку) =
= ∙(1+1)= 1027,841 А
СN = 0,64 +2,5= 0,948
ВФδ = = = 1,355
по рис. 9.61 для В = 1,355 Кδ = 0,95
Коэффициент магнитной проводимости пазового рассеяния обмотки статора с учетом влияния насыщения:
Сэ1 = (tZ1 – bш1)(1-Кδ) = (14,2-3,5)(1-0,95) = 0,535
Δ λn1нас = ∙ = = 0,08255,
где hк = 2,8 мм
λn1нас = λn1- Δ λn1нас = 1,121 -0,08255 = 1,038455
Коэффициент магнитной проводимости дифференциального рассеяния обмотки статора с учетом влияния насыщения:
λД1нас = λД1 ∙ Кδ = 4,57 ∙0,95 = 4,3415
Индуктивное сопротивление фазы обмотки статора с учетом влияния насыщения:
Х1нас = Х1 = 3,18= 3,013051
Коэффициент магнитной проводимости пазового рассеяния обмотки ротора с учетом влияния насыщения и вытеснения тока:
Δ λn2нас = ∙ = = 0,1825
Сэ2 = (tZ2 – bш2)(1-Кδ) = (18,44- 1,5)(1-0,95) = 0,862
λn2насξ = λn2ξ - Δ λn2нас = 1,21 – 0,1825 = 1,02753
Коэффициент магнитной проводимости дифференциального рассеяния ротора с учетом насыщения:
λД2нас = λД2 ∙ Кδ = 2,6 ∙0,95 = 2,47
Приведенное индуктивное сопротивление фазы обмотки ротора с учетом влияния эффекта вытеснения тока и насыщения:
Х/2насξ = Х/2 = 4,846= 4,42054
С1nнас = 1 + = 1 + = 1,05171
где Х12 = 58,27
Расчет токов и моментов:
Rnнас = r1 + C1nнас = 2,088 +1,05171 = 4,082
Хnнас = Х1нас + C1nнас ∙ Х/2насξ = 3,013051+1,05171 ∙4,42 = 7,662
I/2нас = = = 25,341 А
I1nнас = I/2нас = 25,341 = 27,316
Краткость пускового тока с учетом влияния эффекта вытеснения тока и насыщения:
In*= = = 3,6
Кратность пускового момента с учетом влияния вытеснения тока и насыщения.
μn* = ()2 ∙КR = ()2 ∙1,465 = 1,1265
Полученный в расчете коэффициент насыщения
К/нас = = = 1,025
Отличается от принятого К/нас = 1,05 на 0,5%, что удовлетворяет требованиям.
Для расчета других точек характеристики задаемся Кнас уменьшенным в зависимости от тока I1.
Принимаем при
S = 0,8 Kнас = 1,04
S = 0,5 Kнас = 1,03
S = 0,2 Kнас = 1,02
S = 0,1 Kнас = 1,01
S кр= 0,1646 Kнас = 1,0165
Данные расчета сведены в таблицу 1.6.
№ п/п | Расчетная формула | размерность | Скольжение S | |||||
1 | 0,8 | 0,5 | 0,2 | 0,1 | Sком = 0,1646 | |||
1 | Кнас = | - | 1,05 | 1,04 | 1,03 | 1,02 | 1,01 | 1,0165 |
2 | Fn cp = 0,7 | А | 1027,841 | 996,04 | 936,757 | 730,841 | 501,601 | 674,5 |
3 | В= Fn ∙cp∙10-6/(1,6∙δ∙Cn) | Тл | 1,355 | 1,313 | 1,235 | 0,9637 | 0,6614 | 0,8894 |
4 | Kδ = f (Bфδ) | - | 0,95 | 0,955 | 0,96 | 0,97 | 0,99 | 0,98 |
5 | С1 = (tz1 –bш1)(1-Кδ) | мм | 0,535 | 0,4815 | 0,428 | 0,321 | 0,107 | 0,214 |
6 | λn1нас = λn1 – Δλn1нас | - | 1,038455 | 1,046 | 1,0537 | 1,06957 | 1,10317 | 1,086042 |
7 | λД1нас = Кδ ∙ λД1 | - | 4,3415 | 4,36435 | 4,3872 | 4,433 | 4,524 | 4,479 |
8 | X1нас = x1 Σλ1нас/Σλ1 | Ом | 1,05171 | 1,052 | 1,052705 | 1,05284 | 1,054 | 1,05341 |
9 | С1nнас = 1+ Х1нас/Х12n | - | 3,01305 | 3,0294 | 3,0458 | 3,07881 | 3,146 | 3,1122 |
10 | С2 = (tz2 –bш2)(1-Кδ) | мм | 0,862 | 0,7758 | 0,6896 | 0,5172 | 0,1724 | 0,3448 |
11 | λn2насξ = λn2ξ – Δλn2нас | - | 1,0275 | 1,04155 | 1,05803 | 1,0948 | 1,17866 | 1,13305 |
12 | λД2нас = Кδ ∙ λД2 | - | 2,47 | 2,483 | 2,496 | 2,522 | 2,574 | 2,548 |
13 | X/2насξ = X/2 ΣХ2насξ/ Σλ2 | Ом | 4,4205 | 4,45435 | 4,49123 | 4,5698 | 4,7397 | 4,65014 |
14 | Rnнас = r1 +c1n нас r/2ξ/S | Ом | 4,082 | 4,2656 | 5,0566 | 8,89986 | 15,7268 | 10,37 |
15 | Xnнас= X1нас+ С1nнас∙ X/2насξ | Ом | 7,66218 | 7,71535 | 7,774 | 7,89 | 8,1418 | 8,0107 |
16 | I/2нас = U1/ | А | 25,741 | 24,9546 | 23,7226 | 18,497 | 12,423 | 16,79 |
17 | I1nнас= I/2нас | А | 27,316 | 26,918 | 25,616 | 20,252 | 13,96 | 18,77 |
18 | К/нас = I1нас / I1n | - | 1,025 | 1,021 | 1,02 | 1,0187 | 1,0153 | 1,016463 |
19 | I1* = I1нас / I1ном | - | 3,6 | 3,54 | 3,37 | 2,66 | 1,835 | 2,47 |
20 | M* = ()2KR ∙ | 1,1265 | 1,193 | 1,47 | 2,04845 | 1,85 | 2,05 |
... тока электродвигателя. Выбираем кабель ВВГ 4´0,5 с допустимым током 11 А, т.к. 11 А > 6,7 А. Выбранный кабель ВВГ 4´0,5 соответствует выбору. 8. Структурная схема электрооборудования станка Схема структурная определяет основные функциональные части электрооборудования, их назначение и взаимосвязи и служит для общего ознакомления с разрабатываемой установкой. На структурной ...
0 комментариев